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The Born cross sections of e+e− → �0�̄0 are measured at center-of-mass energies from 2.3864 to 
3.0200 GeV using data samples with an integrated luminosity of 328.5 pb−1 collected with the BESIII 
detector operating at the BEPCII collider. The analysis makes use of a novel reconstruction method for 
energies near production threshold, while a single-tag method is employed at other center-of-mass 
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energies. The measured cross sections are consistent with earlier results from BaBar, with a substantially 
improved precision. The cross-section lineshape can be well described by a perturbative QCD-driven 
energy function. In addition, the effective form factors of the �0 baryon are determined. The results 
provide precise experimental input for testing various theoretical predictions.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Studies to gain a better understanding of the internal struc-
ture of the nucleons have been ongoing ever since the discovery 
of their non-pointlike nature [1]. As discussed in Refs. [2–4], the 
electromagnetic form factors (EMFFs) are fundamental nucleon ob-
servables that are closely related to their internal structure and 
dynamics. Further insight into nucleon structure can also be ob-
tained by studying hyperons that contain one or more strange 
quarks [5,6].

Due to their instability, the EMFFs of hyperons are mostly stud-
ied in the time-like region, e.g. via electron-positron annihilation 
into a hyperon-antihyperon pair. Experimentally, many unexpected 
features have been observed concerning the reaction e+e− → B B̄
close to their production thresholds, where B denotes a baryon [7]. 
In the charged-baryon sector, a steep rise in the cross section near 
the production threshold followed by a plateau is observed for 
e+e− → pp̄ [8,9] and e+e− → �+

c �̄−
c [10]. In the neutral baryon 

sectors, a non-vanishing cross section near threshold has been ob-
served for e+e− → nn̄ [11] and e+e− → ��̄ [12]. These abnormal 
threshold effects have been extensively discussed in the literature, 
where they are interpreted as being caused by final-state interac-
tions [13], bound states or unobserved meson resonances [14], or 
attractive and repulsive Coulomb forces among quarks [15]. To de-
cide between these hypotheses and gain a better understanding of 
the nature of these effects, more measurements are required on 
baryon-pair production, especially near production threshold.

Recently, the reactions e+e− → �±�̄∓ [16] and e+e− →
��̄ [17] have been investigated at BESIII with an energy-scan 
approach. No significant threshold effects are observed in these 
processes [16,17]. Instead, a perturbative-QCD driven function can 
describe the cross section lineshapes well. In addition, it is found 
that the cross sections for e+e− → �−�̄+ are consistently smaller 
than those for e+e− → �+�̄− , and the corresponding EMFFs of 
�± are proportional to the incoherent sum of the squared charges 
of their valence quarks, 

∑
q Q 2

q with q = u, d, s quarks. Thus, it is 
interesting to measure the Born cross section of e+e− → �0�̄0

near the production threshold and validate whether the same 
asymmetry appears in the EMFFs of �0 in the same energy re-
gion. In addition, the study of e+e− → �0�̄0 provides important 
experimental input for testing the diquark correlation model [18], 
which predicts that the cross section of e+e− → �0�̄0 reaction 
is significantly suppressed compared to that of e+e− → ��̄. Pre-
vious measurements of e+e− → �0�̄0 have been performed at 
BaBar via an initial-state radiation (ISR) approach [19]. However, 
the uncertainty on these measurements is too large to address the 
above questions. Thus, it is important to study the e+e− → �0�̄0

reaction at collision energies at and above its production threshold 
with improved precision.

In this Letter, we present a measurement of the process 
e+e− → �0�̄0 at BESIII, using data samples corresponding to an 
integrated luminosity of 328.5 pb−1 at center-of-mass (c.m.) en-
ergies ranging from 2.3864 to 3.0200 GeV [20]. A novel method is 
applied to reconstruct the secondary particles from antiproton in-
teractions for signal process near production threshold [12], and 
a single-tag method that reconstructs �0 → γ� and � → pπ−
is performed for other c.m. energies. The charge-conjugate state 
4

of the �0 mode is always implied when discussing the single-tag 
method.

2. Detector and Monte Carlo simulation

The BESIII detector is a magnetic spectrometer [21] located at 
Beijing Electron Positron Collider (BEPCII). The cylindrical core of 
the BESIII detector covers 93% of the full solid angle and con-
sists of a helium-based multilayer drift chamber (MDC), a plastic 
scintillator time-of-flight system (TOF), and a CsI(Tl) electromag-
netic calorimeter (EMC). The subdetectors are enclosed in a su-
perconducting solenoid magnet with a field strength of 1.0 T. The 
solenoid is supported by an octagonal flux-return yoke with resis-
tive plate counter muon-identifier modules interleaved with steel. 
The momentum resolution of charged particles is 0.5% at 1 GeV , 
and the energy loss (dE/dx) measurement provided by the MDC 
has a resolution of 6% for the electrons from Bhabha scattering. 
The energy resolution for the photons is 2.5% (5%) at 1 GeV in 
the barrel (end cap) of the EMC. The time resolution of the TOF is 
68 ps (110 ps) in the barrel (end-cap) region.

Simulated Monte Carlo (MC) samples generated with a geant4-
based [22] package, which includes the geometric description of 
the BESIII detector, and the detector response, are used to deter-
mine detection efficiency and to estimate background contribu-
tions. In this analysis, the generator software package conexc [23]
is used to simulate the signal MC samples e+e− → �0�̄0, and 
calculate the corresponding correction factors for higher-order pro-
cesses with one radiative photon. The angular amplitude of this 
process is taken to be uniform in phase space (PHSP) at 

√
s =

2.3864 GeV due to the by-definition equality of electric (G E ) and 
magnetic (G M ) form factors (FFs) at threshold, and is distributed 
according to the differential amplitude presented in Ref. [24] at 
other c.m. energies. The studies of e+e− → �0�̄0 near thresh-
old employ a sample in which the subsequent decay modes of 
both �0 and �̄0 are simulated using evtgen [25] with an exclu-
sive decay chain e+e− → �0�̄0 → γ γ��̄ → γ γ pp̄π+π− . For 
the higher energy studies of e+e− → �0�̄0 with a single-tag 
method, the decay mode of �0 → γ� with subsequent decay 
� → pπ− is simulated, while the �̄0 is allowed to decay inclu-
sively according to the branching fractions reported by the Parti-
cle Data Group (PDG) [26,27]. Large simulated samples of generic 
e+e− → hadrons events implemented by the LundArlw genera-
tor [28] are used to estimate possible backgrounds. Final-state radi-
ation (FSR) from charged final-state particles is incorporated using 
the PHOTOS package [29]. Backgrounds coming from the QED pro-
cesses e+e− → l+l− (l = e, μ) and e+e− → γ γ are investigated 
with babayaga [30], while bestwogam [31] is used for two-photon 
processes. The dominant background channels, e+e− → ��̄ →
pp̄π+π− and e+e− → ��̄0 + c.c, are generated exclusively using 
the phase-space conexc [23] generator. The background �0 and 
� particles are simulated in the �0 → γ� and � → pπ− decay 
modes.

http://creativecommons.org/licenses/by/4.0/
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3. Formalism

Under the one-photon exchange approximation, the Born cross 
section for the process e+e− → B B̄ , where B is a spin-1/2 baryon, 
can be expressed in terms of G E and G M FFs [32] as

σ B(s) = 4πα2βC

3s

[
|G M(s)|2 + 1

2τ
|G E(s)|2

]
. (1)

Here, α is the fine-structure constant, s is the square of the 
c.m. energy, β = √

1 − 1/τ is a phase-space factor, τ = s/4m2
B , mB

is the baryon mass and C is the Coulomb enhancement factor that 
accounts for the B B̄ final-state interaction [33,34]. The factor C is 
equal to unity for pairs of neutral baryons and y/(1 − e−y) with 
y = πα(1 + β2)/β for pairs of charged baryons. From Eq. (1), it 
follows that the Born cross section of e+e− → B B̄ is non-zero at 
the production threshold (β → 0) for charged baryon pairs, while 
it should vanish at the threshold for neutral baryon pairs.

The magnitude of the effective form factor |Geff| is defined by 
the combination of the G E and G M FFs [35] as

|Geff(s)| ≡
√

2τ |G M(s)|2 + |G E(s)|2
2τ + 1

. (2)

Experimentally, the Born cross section of e+e− → �0�̄0 can be 
determined by

σ B(s) = Nobs

L(1 + δr) 1
|1−
|2 ε B

, (3)

where Nobs is the yield of signal events in data, L is the inte-
grated luminosity, (1 +δr) is the ISR correction factor. 1

|1−
|2 is the 
vacuum polarization factor [36], and ε is the detection efficiency 
determined from simulated MC events. The factor B is the prod-
uct of the relevant daughter branching fractions, i.e., B = B(� →
pπ−) · B(�̄ → p̄π+) for exclusive MC near production threshold, 
and B = B(� → pπ−) for semi-inclusive MC at other c.m. ener-
gies. We note that as the branching fraction of the decay �0 → γ�

is 100%, we omit it from the expression for B [27]. To determine 
reliable detection efficiencies and ISR factors [37], the Born cross 
sections used as input in the generator have been iterated until 
the product 

(
1 + δr

) ·ε has converged, defined as an iteration lead-
ing to a relative change of less than 1.0%. It is noteworthy that the 
Born cross sections used in the event generator are replaced by the 
results measured in this analysis.

With the Born cross section obtained experimentally, |Geff| can 
be determined through substitution of Eq. (1) into Eq. (2) to yield

|Geff (s)| =
√√√√ σ B(s)

4πα2βC
3s

[
1 + 1

2τ

] , (4)

which is proportional to the square root of the Born cross section.

4. Data analysis at 
√

s = 2.3864 and 2.3960 GeV

In this section, the process e+e− → �0�̄0 at
√

s = 2.3864 GeV , 
which is approximately 1.2 MeV above production threshold, and 
at 

√
s = 2.3960 GeV is selected with the final state topology 

γ γ pp̄π+π− . Due to the low momenta of final state particles near 
threshold and the small PHSP in �0(�̄0) decays, the proton and 
antiproton in the final states are not easily detected in the MDC. 
Furthermore, the detection efficiency of signal photons is low at 
these energies, and there is a high multiplicity of background pho-
tons. Thus, we do not search for the protons and the photons from 
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the signal channel. Instead, we reconstruct the soft pions and sec-
ondary products of antiproton interactions, following the method 
described in Ref. [12].

Although the final-state pions from the signal channel have a 
low momentum, and, thereby, a low detection efficiency, these 
charged particles can be still detected by the MDC. A charged track 
must fulfill the condition | cos θ | < 0.93, where θ is the polar an-
gle with respect to the direction of the positron beam. The closest 
approach to the interaction point (IP) is required to be less than 
10 cm along the beam direction (|V z| < 10 cm), and less than 1 cm 
in the plane perpendicular to the beam (V xy < 1 cm). If a charged 
track does not satisfy the above requirements, it is considered to 
be a not good (NG) charged track. Only the dE/dx information ob-
tained from the MDC is used to compute particle identification 
(PID) confidence levels for a pion, kaon and proton hypotheses, as 
the low momentum of the particles under consideration prevents 
them reaching the TOF system. Each charged track is assigned to 
the particle type with the highest confidence level. Exactly two 
good charged tracks and at least two NG tracks are required in 
each candidate event. The candidate events are required to have 
two good charged tracks identified as π− and π+ , associated with 
the pions from the �(�̄) decay. Due to the vertex resolution of 
low momentum charged tracks near threshold, the detector unable 
to distinguish between these soft pions comes from two different 
� decay vertices. To improve the pions momentum resolution and 
suppress the beam-associated background, the two charged pion 
tracks are constrained to a common decay vertex by applying a 
vertex fit. The transverse distance of the decay vertex from the IP 
is required to be less than 2 cm.

The antiproton from the signal decay interacts with the nucle-
ons of the detector material, mostly in the beam-pipe, and pro-
duces several secondary particles. To identify the secondary par-
ticles produced from the antiproton, at least two NG tracks are 
required. A vertex fit is then applied to those high momenta sec-
ondary tracks. Furthermore, the transverse distance of the decay 
vertex (Rxy) with a resolution of 0.12 cm from the beam pipe is 
required to lie within (1, 5) cm. This range is set following the 
results of a signal MC study which shows the majority of decay 
vertices to be at around 3 cm, which is the radius of beam-pipe.

It is further required that θπ+π− ∈ (20◦, 170◦), where θπ+π− is 
the opening angle between the π+ and the π− , to remove cosmic 
rays and γ -conversion (γ → e+e−) events. To suppress the com-
binatorial background, the momentum of π− tracks is required to 
be located in the signal region (0.08, 0.12) GeV/c. The momentum 
of π+ tracks is shown in Fig. 1.

Potential sources of residual contamination that survive the se-
lection are investigated by studying the generic hadronic MC sam-
ples with an event type analysis tool, TopoAna [38]. The main 
peaking background originates from e+e− → ��̄ and e+e− →
�̄�0 + c.c., which are decays with one or two fewer photons 
than the signal final state. For these processes, dedicated exclu-
sive MC samples are generated to estimate their contributions in 
the signal region. It is noted that the momentum of pion tracks 
from �’s decay can be used to distinguish the e+e− → �0�̄0

signal channel from the exclusive background e+e− → ��̄ and 
e+e− → �̄�0 +c.c. channels, as pion is mono-energetic in e+e− →
�0�̄0 with almost standing-still �0 near its production threshold. 
The contribution from beam-associated background events is es-
timated from a sample of data collected with separated beams 
at

√
s = 2.6444 GeV. The background events are normalized 

according to beam-time. Detailed MC studies indicate that the 
generic hadronic MC samples are distributed smoothly after re-
moving the above exclusive background channels, as well as the 
beam-associated background in the region of interest, as illustrated 
in Fig. 1.
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Fig. 1. Momentum distributions of reconstructed π+ tracks for selected e+e− →
�0�̄0 events at (a) √s = 2.3864 GeV and (b) √s = 2.3960 GeV. Dots with error bars 
(in black) are from data; hatched histograms (in grey and magenta) are the com-
binatorial background events of normalized beam-related background and generic 
hadronic MC samples after removing the peaking exclusive background channels. 
The solid blue curve represents the total fit, red dashed curve the signal, dashed 
blue curve the non-peaking backgrounds, whereas the long dashed violet curve and 
dashed green curve are the fixed background lineshapes from the exclusive MC sam-
ples of e+e− → ��̄ and e+e− → ��̄0 + c.c., respectively.

To determine the signal yields, an unbinned maximum-like-
lihood fit is performed to the momentum of π+ tracks (pπ+ ). The 
signal probability-density function (PDF) is described with a MC-
simulated at 2.3864 GeV, while at 2.3960 GeV convolved with a 
Gaussian function to compensate for possible mass-resolution dif-
ferences between data and MC simulation. The parameters of the 
Gaussian function are free in the fit, and corresponding Gaussian 
smearing fit values of the mean μ = (−0.1 ± 3.9) MeV, and the 
width σ = (1.0 ± 0.7) MeV are respectively. The backgrounds from 
e+e− → ��̄ and e+e− → �̄�0 + c.c. are described by the MC-
determined shapes, where the yields normalized according to the 
luminosity and their cross sections [12] are fixed in the fit. The PDF 
for other generic hadronic MC samples and beam-associated back-
grounds are described by a second-order polynomial function. The 
fit results at 

√
s = 2.3864 and 2.3960 GeV are shown in Fig. 1. 

The statistical significances of the signals in pπ+ distributions at √
s = 2.3864 and 2.3960 GeV are found to be 2.3σ and 4.5σ , re-

spectively, which are determined according to Wilks’ theorem [40]
from the differences of the log-likelihood values and degrees of 
freedom with and without considering the signal process in the 
fits. As a cross-check, an alternative two-dimensional fit is per-
formed to the momentum of π+ and π− tracks at each energy 
point, which is found to give compatible results. The Born cross 
sections of e+e− → �0�̄0 and effective FFs of �0 at 

√
s = 2.3864

and 2.396 GeV can be determined using Eq. (3) and Eq. (4). The 
results and the inputs used in the calculation are summarized in 
Table 3.

Since the statistical significance of signal events is less than 
3σ at 2.3864 GeV, the upper limit (U.L.) on the number of sig-
nal events (NU.L.) is estimated at the 90% confidence level (C.L.) 
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using a Bayesian method [39]. We separate the systematic un-
certainties into two categories: correlated uncertainties associated 
with the background shapes and fit range, and the remainder that 
are considered as uncorrelated. To take into account the uncor-
related uncertainties related to the fit procedure, two alternative 
fit scenarios are considered: (1) changing the momentum range 
by 5 MeV/c; and (2) replacing the second-order polynomial func-
tion with the exact background distribution seen in Fig. 1. We 
consider all combinations of the two scenarios and select the like-
lihood curve with the maximum NU.L. as a conservative estimate. 
The selected likelihood distribution is then smeared by the re-
maining so-called correlated uncertainties, whose components are 
described below. The calculation of the U.L. on the Born cross sec-
tion and effective FF at the 90% C.L. is performed analogously by 
replacing the Nobs with NU.L. , as shown in Table 3.

Several sources of systematic uncertainties are considered in 
the measurement of the Born cross section near the production 
threshold. The π± tracking (PID) efficiencies are studied using a 
control sample of J/ψ → pp̄π+π− events. The corresponding sys-
tematic uncertainties are estimated as 4.6% (2.0%). Alternative fits 
are performed to study the uncertainty from the fit procedure. 
These include varying the fitting range, varying the signal shape 
by fixing the resolution of the convolved Gaussian to be ±1σ dif-
ferent from its nominal value, changing the background PDF from 
a second order polynomial function to the background shape from 
the generic hadronic MC samples combined with the contribution 
from the beam-related background and varying the cross section of 
fixed backgrounds lineshapes within the uncertainty of normalized 
backgrounds events.

Possible biases due to the various rejection windows are as-
sessed by varying the criteria above and below the nominal se-
lection, as described in Ref. [41,42]. For each systematic vari-
ation, the parameters values are re-obtained, xtest ± σtest and 
the changes evaluated compared to the nominal values, �x =
|xnom. − xtest|. Also calculated are the uncorrelated uncertainties, 
σuc. =

√
|σ 2

nom. − σ 2
test|, where σnom. and σtest correspond to the fit 

uncertainties of the nominal and systematic test results, respec-
tively. A systematic uncertainty is assigned, if the ratio r = �x/σuc.
shows a trending behavior and is larger than two. The effect of 
the Rxy is tested by varying the boundaries of the rejection win-
dows from 0.4 to 1.6 cm (lower side) and 4.4 to 5.6 cm (higher 
side) with respect to the nominal selection. Since the correspond-
ing normalized shift is r < 2, no uncertainty of the selection effi-
ciency for the antiproton is assigned. The effect of the θπ+π− veto 
is tested by varying the boundaries of the rejection windows from 
16◦ to 24◦ (lower side) and 166◦ to 174◦ (higher side) with respect 
to the nominal selection. Since the corresponding normalized shift 
is r < 2, no associated uncertainty is assigned. The uncertainty due 
to the cross section lineshape is negligible as well, as is discussed 
below in Sec. 5. The c.m. energy spread of BEPCII is 0.5 MeV, which 
is measured by Beam Energy Measurement System [43]. Since the 
BEMS is not operated during the data taking from 2.3864 to 3.0200
GeV, however, we can take the comparison during data taking of 
J/ψ scan as a reference [20]. It is noted that the uncertainty from 
the beam energy spread is negligible in this analysis. However, the 
conservative estimate of the uncertainty due to the variation of 
c.m. energy and energy spread, while assuming the uncertainty 
of c.m. energy to be 1.5 MeV. The yielding uncertainties in the 
cross section are 1.1% and 5.6%, and the corresponding uncertain-
ties in the effective FF are 17% and 3.2%, respectively, at 2.3864
and 2.3960 GeV, where the larger uncertainty in the effective FF at 
2.3864 GeV is due to the rapid variation of the velocity factor β . 
The integrated luminosity is determined with large angle Bhabha 
events with an uncertainty of 1.0% [20]. All these systematic un-
certainties are treated as uncorrelated and summed in quadrature, 
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Table 1
Systematic uncertainties on the Born cross section mea-
surements (in%).

Source 2.3864 2.3960

Luminosity 1.0 1.0
Tracking 4.6 4.6
PID 2.0 2.0
Antiproton − −
Background shape 5.4 2.0
Fitting range 1.3 7.9
Fixed background shape 4.8 2.4
ISR factor − −
Opening angle − −
Beam energy 1.1 5.6

Total 9.0 11.4

giving a total uncertainty of 9.0% and 11.4% for the Born cross sec-
tion at 

√
s = 2.3864 and 2.3960 GeV, as summarized in Table 1. As 

the effective FF is proportional to the square root of the Born cross 
section, the corresponding systematic uncertainty on this quantity 
is half that of the uncertainty on the Born cross section.

5. Data analysis from 
√

s = 2.5000 to 3.0200 GeV

As the full reconstruction method for selecting the e+e− →
�0�̄0 events has a low reconstruction efficiency, a single-tag �0

baryon technique is employed at energies of 
√

s = 2.5000 GeV and 
above. We fully reconstruct the �0-prong in the γ� decay mode 
with � → pπ− .

Charged tracks are reconstructed within | cos θ | < 0.93 and 
are required to satisfy |V z| < 30 cm and V xy < 10 cm. The com-
bined information from dE/dx and TOF is used to form particle-
identification (PID) confidence levels for π, K and p hypothe-
ses. Each track is assigned to the particle type corresponding to 
the highest confidence level. Candidate events with at least two 
charged tracks identified as a proton and a pion are kept for fur-
ther analysis. The photon candidate is required to be within the 
barrel region (| cos θ | < 0.8) of the EMC with deposited energy of 
at least 25 MeV, and within the end-cap regions (0.86 < | cos θ | <
0.92) with at least 50 MeV. In order to suppress electronic noise 
and showers unrelated to the event, the EMC time difference from 
the event start time is required to be within (0, 700) ns. At least 
one photon is required in this analysis.

� candidates are reconstructed with a vertex fit to all the iden-
tified pπ− combinations. A secondary-vertex fit [44] is then em-
ployed for the � candidate and events are kept if the decay length, 
i.e. the distance from the production vertex to the decay vertex, is 
greater than zero. A mass window of |Mpπ− − m�| < 6 MeV/c2 is 
required to select � candidates, where m� is the known � mass 
from the PDG [27]. In addition, the value of χ2 from the sec-
ondary vertex fit is required to be less than 20, determined by 
optimizing the figure of merit N S/

√
N S + NB based on MC simu-

lation, where N S is the number of signal MC events and NB is the 
number of background events in the generic hadronic MC sample 
normalized according to integrated luminosity and cross section. 
All combinations of the � and photon candidates are considered, 
and that combination with the minimum value of |p�0 − pexp.| is 
chosen to determine the photon from �0 decay, where p�0 and 
pexp. are the measured and expected momentum of �0, defined as 
pexp. ≡

√
s/4 − m2

�0 , with m�0 the mass of �0 from the PDG [27]. 
A momentum window |p�0 − pexp.| < 3.5σp, is then applied to 
select the γ� candidate. Here both momenta are defined in the 
c.m. frame system, and σp is the corresponding optimized momen-
tum resolution, which is about 7 MeV/c at each energy point.

The generic hadronic MC samples are used to study possi-
ble peaking-background contributions. After applying the same 
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requirements as used for the data, the surviving background is 
found to originate from e+e− annihilation events with the same 
final state particles as the signal process, with one or more addi-
tional π0, and with one less photon. These background processes 
are mainly from contributions including intermediate states such 
as �, �, and � baryons. For the dominant backgrounds such 
as e+e− → ��̄ and e+e− → �̄�0 + c.c., dedicated exclusive MC 
samples are generated to estimate their contributions to the γ�

mass spectrum. A few peaking background events from the pro-
cess e+e− → �̄�0 + c.c. contribute to the γ� mass region and 
their normalized contribution is shown in Fig. 2. There is a negli-
gible contribution from e+e− → ��̄ events.

The signal yields for e+e− → �0�̄0 at each energy point are 
determined by an unbinned maximum likelihood fit to the Mγ �

spectrum. The PDF is described with the MC-simulated shape con-
volved with a Gaussian function to account for the mass-resolution 
difference between data and the MC simulation. The parameters of 
the Gaussian function are floating in the fit, and the correspond-
ing smearing fit values of the mean and the width are presented 
in Fig. 2 at each energy point. A second-order polynomial func-
tion describes the non-peaking background PDF, whereas the peak-
ing backgrounds are modeled with the MC-determined lineshapes 
and their respective yields fixed in the fits. Fit results at 

√
s =

2.3960, 2.5000, 2.6444, 2.6464, 2.9000 and 2.9884 GeV are shown 
in Fig. 2. As the single-tag method leads to the double counting 
effect of the �0�̄0 final-state. It is rather possible that a small 
fraction of events of both �0 and �̄0 prongs are reconstructed, 
which introduces the double counting while fitting the Mγ � spec-
trum. A correction factor of 1.09 for 

√
s = 2.6444 and 2.6464 GeV

is applied to the statistical uncertainty to account for this effect 
based on MC simulation [17], while for other energy points, the 
correction factor is estimated to be 1.07. The number of observed 
events are summarized in Table 3. The Born cross sections and cor-
responding effective FFs are determined using Eq. (3) and Eq. (4). 
The quantities used in the Born cross sections and effective FFs cal-
culations for e+e− → �0�̄0 are summarized in Table 3. It should 
be noted that the data at c.m. energies 2.9500, 2.9810, 3.0000 and 
3.0200 GeV are combined to a single luminosity-weighted energy 
point of 2.9884 GeV on account of the limited size of each sub-
sample.

Sources of systematic uncertainties related to the cross-section 
measurement include those associated with the � reconstruc-
tion, the photon detection, the momentum window, the fitting 
method, the cross section lineshape, the angular distribution, the 
relative phase and the luminosity measurement. The systematic 
uncertainty on the � reconstruction efficiency, associated with the 
tracking/PID, decay length and mass window requirements is es-
timated to be 4.5% [12]. The uncertainty on the photon-detection 
efficiency is assigned by considering a control sample of the de-
cay J/ψ → π+π−π0 and is found to be 1.0% for each pho-
ton [45]. The p�0 veto is tested by varying the selection window, 
|p�0 − pexp.| from 2σp to 6σp with the same method as explained 
above in Sec. 4, and taking the largest deviation from the nominal 
result as a conservative estimate of the corresponding uncertainty. 
Alternative fits are performed to study the uncertainty from the 
fit procedure. These include varying the fitting range, changing the 
background PDF from a second-order polynomial to a third-order 
polynomial function and varying the cross section of fixed back-
ground lineshape within the uncertainty of normalized background 
events. The uncertainty associated with the description of the sig-
nal lineshape is estimated by parameterizing the lineshape in each 
iteration according to the pQCD power-law function and sampling 
500 lineshapes according to the uncertainty of the parameters and 
their covariance matrix. The variation in result is found to be much 
less than 1% and can be neglected. In order to investigate the bias 
coming from the angular distribution, the analysis is repeated with 
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Fig. 2. Fit result of the mass spectra Mγ� at each energy point. Dots with error bars are from data, the solid blue curve represents the overall fit, red dashed curve the signal, 
dashed blue curve the non-peaking backgrounds, and the long dashed green curve is the fixed background lineshape from a MC sample e+e− → ��̄0 + c.c., respectively. 
The mean μ and width σ in each legend represents the Gaussian smearing fit values in unit of GeV at each energy.
Table 2
Systematic uncertainties on the Born cross section measurements (in%).

Source 2.5000 2.6444 2.6464 2.9000 2.9884

Luminosity 1.0 1.0 1.0 1.0 1.0
� reconstruction 4.5 4.5 4.5 4.5 4.5
Photon reconstruction 1.0 1.0 1.0 1.0 1.0
Momentum window 3.6 2.0 3.4 3.4 2.2
Background shape 9.9 1.0 0.6 1.0 1.5
Fitting range 2.9 3.0 2.8 3.1 1.2
Fix background shape 0.2 0.5 0.6 0.7 1.7
ISR factor − − − − −
Angular distribution 1.8 1.1 1.9 2.5 1.4
Relative phase − − − − −
Total 12.0 6.1 6.8 7.2 6.0

the two extreme values of G E = 0 and G M = 0 and the difference 
in the resulting efficiencies divided by a factor of 

√
12 is taken as 

the uncertainty [41]. In addition, to account for effects arising from 
the uncertainty in the relative phase (��) between the G E and 
G M FFs, we consider two extreme cases with �� = 0◦ and 90◦ , 
and find the difference in results to be negligible. The integrated 
luminosity is determined with large-angle Bhabha events with an 
uncertainty of 1.0% [20]. All the uncertainties are considered un-
correlated and summed in quadrature. They are between 6.1% and 
12.0% of the cross sections, depending on the c.m. energy as listed 
in Table 2.

As a cross-check, we compare the Born cross-section result 
measured at 

√
s = 2.3960 GeV from the single-tag method with 

that of the novel approach described in Sec. 4. It is found that 
both results are consistent within the uncorrelated uncertainty. 
The result obtained by the novel approach is considered as nom-
inal at this energy point, since it leads to a smaller uncertainty 
on the cross section than the result obtained using the single-tag 
method.
8

6. Lineshape analysis

The measured Born cross-section lineshape of e+e− → �0�̄0

from 
√

s = 2.3864 to 3.0200 GeV is shown in Fig. 3 (a). The cross 
sections measured in this analysis are in good agreement with that 
of BaBar, but with improved precision of at least 10% at low 

√
s

and over 50% above 2.5000 GeV as depicted in Fig. 3 (a). A pertur-
bative QCD-motivated energy power function [46], given by

σ B(s) = βC

s

(
1 + 2m2

B

s

)
c0

(s − c1)
4
(
π2 + ln2

(
s/�2

QCD

))2
, (5)

is used to fit the lineshape, which has been successfully applied 
in the study of the e+e− → �±�̄∓ reaction [16]. The free pa-
rameters in the fit are the normalization constants c0 and c1, 
which describes the average effect of a set of possible interme-
diate states representing the form factors in the framework of the 
vector-meson-dominance model [47]. The QCD scale �QCD is fixed 
to 0.3 GeV . In the fit, both statistical and systematic uncertainties 
are taken into account. The fit result is shown in Fig. 3 (a) with a 
fit quality of χ2/ndof = 9.98/5, where ndof is the number of de-
grees of freedom. To obtain a better understanding of the full set 
of � isospin states, the effective FFs of �0 are compared with pre-
vious measurements of �± at BESIII [16] as shown in Fig. 3 (b). 
An asymmetry in results is observed for the � isospin triplet, 
with the �+ results lying above the �0 results which in turn are 
higher than the �− results. This behavior confirms the hypothe-
sis that the effective FF is proportional to 

∑
q Q 2

q with q = u, d, s
quarks. Moreover, the effective form factor of the �0 is compared 
with that of the � baryon to test the diquark correlation model. 
Our measurements are inconsistent with the hyperon-antihyperon 
(Y Ȳ ) potential models from Ref. [13], where the cross section 
of e+e− → �0�̄0 exhibits a weaker energy dependence than the 
pQCD power-law function in Eq. (5). We notice that there is a pre-
diction for the non-resonant cross section of e+e− → �0�̄0 at the 
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Table 3
The numerical results of Born cross sections σ B and effective FFs |Geff| at each c.m. energy and the quantities used in the calculation, 
(1 + δ) = (1 + δr) 1

|1−
|2 , defined in the text. The vacuum polarization factor 1
|1−
|2 is 1.04 from 2.3864 to 2.6464 GeV and 1.03 for the last 

two energy points. The energy point 2.9884 GeV is the luminosity-weighted combined dataset of the 2.9500, 2.9810, 3.0000 and 3.0200 GeV
subsamples. The last column shows the statistical significance of the signal S(σ ) at each energy point. The values in parentheses represent
the corresponding upper limit at the 90% confidence level. The first uncertainty is statistical, and the second is systematic.

√
s (GeV) L (pb−1) ε (%) 1 + δ Nobs(NU.L.) σ B (pb) |Geff| (×10−2) S(σ )

2.3864 22.55 11.1 0.65 11.7 ± 5.8 (< 28.0) 17.6 ± 8.73 ± 1.58(< 42.4) 15.3 ± 3.79 ± 0.69(< 23.7) 2.3
2.3960 66.87 7.7 0.75 45.1 ± 11.2 28.6 ± 7.10 ± 3.26 11.5 ± 1.43 ± 0.66 4.5
2.5000 1.10 32.3 0.94 12.7 ± 6.4 59.6 ± 30.3 ± 7.15 9.90 ± 2.52 ± 0.60 3.1
2.6444 33.72 47.1 1.10 221 ± 25 19.8 ± 2.23 ± 1.21 5.12 ± 0.29 ± 0.16 12.4
2.6464 34.00 46.4 1.10 195 ± 24 17.6 ± 2.13 ± 1.20 4.83 ± 0.29 ± 0.16 11.9
2.9000 105.23 40.2 1.44 116 ± 17 2.98 ± 0.45 ± 0.22 1.95 ± 0.15 ± 0.07 9.4
2.9884 65.18 34.9 1.62 78.7 ± 13.9 3.34 ± 0.59 ± 0.20 2.08 ± 0.18 ± 0.06 9.0

Fig. 3. (a) Comparison of the cross sections for e+e− → �0�̄0 is represented by the dots with error bars in blue from this analysis, while triangles in green are results from 
BaBar [19]. It is noted that BaBar results do not include corrections for leptonic and hadronic vacuum polarization in the photon propagator. The solid line in red represents 
the fit with the pQCD energy power function. (b) Comparison of the effective FFs among this work and previous work of BESIII [12,16]. The blue circles represent the results 
from this analysis. The red upper triangles, black lower triangles and violet squares are from previous BESIII work.

y 
J/ψ mass [48], based on an effective Lagrangian density, that is 
consistent with our result when extrapolated to 

√
s = 3.097 GeV

using Eq. (5).

7. Summary

In summary, data samples collected with the BESIII detector at 
c.m. energies between 2.3864 GeV and 3.0200 GeV have been ex-
ploited to perform measurements of the process e+e− → �0�̄0. 
Born cross sections and effective FFs have been determined with 
a novel method for c.m. energies near production threshold at √

s = 2.3864 and 2.3960 GeV. No significant signal is observed 
at 

√
s = 2.3864 GeV and an upper limit on the cross section at 

the 90% C.L. is determined. No significant threshold effect is ob-
served for this process, in common with the behavior seen in an 
earlier analysis of e+e− → �±�̄∓ [16]. In addition, a single-tag 
method has been applied at c.m. energies between 2.3960 GeV 
and 3.0200 GeV. The measured results are in good agreement 
with previous results from BaBar [19], but the precision is signifi-
cantly improved. The cross-section lineshape for e+e− → �0�̄0 is 
well described with a pQCD-motivated function. An asymmetry of 
the effective FFs of � isospin triplet is observed, which is con-
sistent with their incoherent sum of squared charges of valence 
quarks [16]. Our results also provide experimental inputs to test 
various theoretical models, such as Y Ȳ potential [13] and diquark 
correlation [18] models.
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