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Abstract
Conventional contrast enhancement methods stretch histogram bins to provide a uniform distribution. However, they also 
stretch the existing natural noises which cause abnormal distributions and annoying artifacts. Histogram equalization should 
mostly be performed in low dynamic range (LDR) in which noises are generally distributed in high dynamic range (HDR). 
In this study, a novel image contrast enhancement method, called low dynamic range histogram equalization (LDR-HE), is 
proposed based on the Quantized Discrete Haar Wavelet Transform (HWT). In the frequency domain, LDR-HE performs 
a de-boosting operation on the high-pass channel by stretching the high frequencies of the probability mass function to the 
nearby zero. For this purpose, greater amplitudes than the absolute mean frequency in the high pass band are divided by a 
hyper alpha parameter. This damping parameter, which regulates the global contrast on the processed image, is the coef-
ficient of variations of high frequencies, i.e., standard deviation divided by mean. This fundamental procedure of LDR-HE 
definitely provides a scalable and controlled dynamic range reduction in the histograms when the inverse operation is done in 
the reconstruction phase in order to regulate the excessive contrast enhancement rate. In the experimental studies, LDR-HE 
is compared with the 14 most popular local, global, adaptive, and brightness preserving histogram equalization methods. 
Experimental studies qualitatively and quantitatively show promising and encouraging results in terms of different quality 
measurement metrics such as mean squared error (MSE), peak signal-to-noise ratio (PSNR), Contrast Improvement Index 
(CII), Universal Image Quality Index (UIQ), Quality-aware Relative Contrast Measure (QRCM), and Absolute Mean Bright-
ness Error (AMBE). These results are not only assessed through qualitative visual observations but are also benchmarked 
with the state-of-the-art quantitative performance metrics.

Keywords  Image enhancement · Scalable contrast improvement · Quantized Discrete Haar Wavelet Transform · Quantized 
probability mass function

1  Introduction

Image enhancement and contrast improvement methods are 
extensively used in many image processing applications 
since the increased image quality is very crucial for human 
visual perception. Contrast can be described as the differ-
ence in visual properties that enables to distinguish an object 
from other objects and backgrounds. Namely, it is the dif-
ference in color intensity and luminance reflected from two 
adjacent surfaces. Since the human visual system is clearly 

more contrast sensitive than luminance, a human can easily 
perceive the environment by contrast.

As a restoration scheme, histogram equalization (HE) 
methods are used for contrast enhancement and visual qual-
ity improvement in many areas [1]. The main purpose of 
these methods is to optimize image contrast by distributing 
the frequencies of image intensity information uniformly. 
HE techniques basically are run in both spatial and fre-
quency domains. Frequency zone is more preferable since 
it gives more accurate results.

Random variation of color intensities is called noise 
which can naturally appear in digital images. Noises caused 
by external sources are the degradation of color signals. 
Conventional HE techniques might normally create some 
artifacts and abnormal patterns in the processed image 
because of these existing noise elements. Noises in the input 
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image are also equalized throughout the enhancement pro-
cess [2]. Remaining artifacts and abnormal patterns reduce 
the image quality and natural look. Similarly, excessive con-
trast enhancement causes unnatural appearances. An ideal 
method should keep the originality and brightness mostly 
unchanged.

Most image contrast enhancement techniques fail in their 
duty by producing visual artifacts, giving more brightness, 
generating over-contrasted parts, creating abnormal patterns 
in the processed images. It is true that over enhancement in 
both brightness and contrast significantly cause annoying 
artifacts and unnatural appearances. An ideal method should 
enhance the contrast of the processed image while keeping 
the quality and brightness with respect to the original one. 
Hence, there is a fact that there should be a balanced histo-
gram equalization.

Most of the contrast enhancement methods, even per-
formed with the Haar Wavelet Transformation (HWT) 
models, can also preserve existing noises in the image [3]. 
HE should be performed in low dynamic range (LDR) 
since noises are naturally distributed in high dynamic range 
(HDR) [4, 5]. Namely, noises in an image can be generally 
found in the high frequencies.

In this study, a discrete HWT is empowered in LDR in 
order to improve the image quality by eliminating noises. 
As a novel contribution, LDR is satisfied with Quantized 
Discrete HWT [6] on histograms before equalization. Thus, 
LDR-HE (low dynamic range histogram equalization) by a 
quantized parameter is proposed to improve image quality 
using the Quantized Discrete HWT. In this method, existing 
noises are eliminated with an alpha parameter. This damping 
parameter used in the probability mass function (PMF) sof-
tens the high oscillations. This mechanism additionally pro-
vides a scalable contrast enhancement approach. This study 
also displays that the scalable quantization factor provides a 
great contribution in quality enhancement.

Like discrete cosine transform (DCT) and discrete Fou-
rier transform, HWT is a lossless convolution technique 
which keeps the mean of the input vector as constant after 
de-convolution [7]. In this study, Quantized Discrete HWT 
is employed in order to divide the 1D histogram signals 
into two frequency components: low-frequency and high-
frequency sub-bands. Since optimum HE requires contrast 
stretching, mean preserving property of HWT is used in 
this regard. Additionally, noises which mainly occur in the 
high-frequency band are reduced so that the quality decre-
ment can be minimized. In order to reduce dynamic range in 
frequency domain, high-frequency information is quantized 
with a functional parameter of quantization factor which is 
similar to the DCT-quantization technique in JPEG com-
pression. The concept of quantization factor derives from 
the DCT approach used in the JPEG compression. After the 
de-convolution procedure, a low dynamic range histogram 

equalization might be achieved with enhanced image quality 
and contrast.

This article has five more sections. The second chap-
ter below covers a literature review. In the third chapter, 
there are detailed explanations of the presented approach. 
An extensive comparative study and discussions are placed 
into the fourth section. The summarized contributions are 
presented in the fifth section before the availability and 
acknowledgements section.

2 � Literature review

Various HE (histogram equalization) algorithms for image 
quality achievement and contrast enhancement have been 
proposed previously in the literature. Some brightness pre-
serving HE methods are also introduced. All these methods 
traditionally focus on contrast improvement by changing the 
color intensities. Some features and information in the image 
cannot be well preserved by these HE methods.

Numerous recent studies in the literature are evaluated 
carefully and only a few of them are found relevant and valu-
able to be examined and included into this article. These 
studies are categorized and presented as possible as in a 
chronological order.

The HE algorithms can be roughly examined in two 
main categories: global HE (GHE) and local HE (LHE). 
In GHE, the main purpose is to get a uniformly distributed 
histogram by performing a function for cumulative densi-
ties of the input image. This approach can be suitable for 
global enhancement but cannot preserve the local informa-
tion and characteristics. LHE overwhelms these problems 
by using the color intensities of neighboring pixels with a 
kernel matrix. In other words, a mask sequentially visits 
the all pixels to find out the cumulative distribution. How-
ever, performing LHE needs higher computational cost. 
Besides, LHE occasionally generates excessive noises, over-
enhancements, and checkerboard effects in some parts on the 
enhanced image [8].

The most well-known HE method is adaptive histogram 
equalization (AHE) which has a tendency to produce noises 
and over-amplifications in relatively homogeneous regions 
of the image. CLAHE (Contrast Limited AHE) is the modi-
fication of AHE which prevents these problems by limiting 
the amplification [9]. There are some improved versions of 
CLAHE in the literature. Some of them are the nonlinear 
and adaptive HE method using wavelet-based gradient his-
tograms [10] and gradient mapping [11]. Another one is 
the Discrete Wavelet Transformation which has three phases 
[12]. Decomposing the original image into low and high-fre-
quency components is the first phase. Enhancing the low-fre-
quency coefficients and keeping high-frequency coefficients 
steady in order to suppress the noise are the second one. The 
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proposed weighting factor which reduces over-enhancement 
is the last phase.

The exact histogram specification (EHS) method moves 
from the problem into a k-dimensional space by using an 
invertible cumulative distribution function (CDF) in order to 
induce a strict ordering among pixels. EHS generally focuses 
on ill-posed problems by using a probability density function 
and a predefined square mask [13].

A dynamic HE (DHE) is proposed by Al-Wadud et al. for 
low-contrast images by adjusting only one parameter. DHE 
subdivides the histogram with respect to local minimum and 
allocates gray-level ranges for each subdivision until equal-
izing them separately [14]. Another dynamic approach is 
the Brightness Preserving Dynamic Fuzzy HE (BPDFHE) 
which uses fuzzy image statistics [15]. This method per-
forms the five-step stages: computing fuzzy histogram, par-
titioning of histogram, dynamically equalizing histogram of 
partitions, and normalizing brightness.

Mean preserving Bi-HE (BBHE) [16], Dualistic Sub-
Image HE (DSIHE) [17], and Minimum Mean Brightness 
Error Bi-HE (MMBEBHE) [18] are also proposed to both 
improve contrast and maintain brightness. BBHE splits the 
histogram into two sub-histograms using a mean intensity 
threshold. Then, each section is equalized individually. In 
contrast, the histogram at the median is separated by DSIHE. 
MMBEBHE is based on the minimum absolute mean bright-
ness error between output and input average values. Even 
though these approaches preserve brightness, they may not 
produce natural-looking images.

As a robust contrast enhancement method, Median-Mean-
Based Sub-Image-Clipped HE (MMSICHE) [19] gives a 
controlled natural enhancement rate. This limited enhance-
ment is performed in three phases. The mean and median 
brightness values is calculated firstly. Clipping the histogram 
using a plateau limit set as an occupied intensity median is 
done secondly. Bisecting the clipped histogram based on 
median intensity is processed thirdly to reach the final result 
before dividing the histogram into four sub images based on 
regional mean intensity.

Exposure-based Sub-Image HE (ESIHE) is designed for 
low exposure gray scale images [20]. Exposure thresholds 
of ESIHE are calculated to split the input image into sub 
images having different intensity levels. The histogram is 
also cropped using a criterion for controlling the enhance-
ment rate. The criterion is a threshold value obtained from 
an average number of intensity occurrences. Each individual 
histogram of sub-images is separately equalized to be finally 
combined into one image.

Poddar et al. proposed a generalized HE method in the 
dynamic range of an input image without a parameter. The 
variants of this NMHE (Non-parametric modified HE) 
method both preserve and increase the brightness adaptively 
[21].

The brightness preserver RSWHE (Recursive Separated 
and Weighted HE) divides an image into sub-histograms 
recursively using a normalized power law function inde-
pendently on each sub-histogram [22]. Similarly, Sim et al. 
present a method called RSIHE (Recursive Sub-Image HE) 
for gray-level images [23]. In same filed, RMSHE (Recur-
sive Mean-Separate HE) is a scalable brightness preserver 
method [24].

Another computationally efficient framework is intro-
duced in the wavelet domain. This method is capable of 
enhancing both local and global brightness and contrast 
likewise preserving color consistency [25]. Iqbal et  al. 
presented a method to enhance medical image resolutions 
using dual-tree complex wavelet transform, singular value 
decomposition, and non-local means [26]. Wong et al. pro-
posed a method which maximizes the coverage of permit-
ted intensity ranges by employing an optimal weight factor 
strategy to combine both the input and interim images. The 
optimal weighting factor, which is found iteratively, enables 
optimum image enhancement while reducing artifacts [27].

Apart from these linear models, image contrast enhance-
ment can be considered as an optimization problem using 
different types of approaches to reach an optimal solution 
[28]. Similarly, an image improvement method enhances the 
details in poorly illuminated areas using a bad illumination 
pass filter (BIPF) and an adaptive logarithmic transforma-
tion [29]. A survey of various methods is recently performed 
where the different types of HE algorithms are concisely 
explained in different aspects [30]. In this survey study 
[31], HE methods are almost classified into some catego-
ries. Local methods are listed as LHE, CLAHE, EHS, DHE, 
MMSICHE, ESIHE, and DSIHE. Adaptive ones can be AHE 
and CLAHE. BBHE, BPDFHE, and MMBEBHE are in the 
brightness preserving class. GHE and the proposed LDR-HE 
methods might be also categorized as global.

3 � Proposed method: LDR‑HE

In this study, a scalable and adaptable HE design is intro-
duced by implementing Quantized Discrete Haar Wavelet 
Transform (Q-DHWT) on the probability mass function 
(PMF) of histograms. This section provides a brief back-
ground, the description of the Q-DHWT model, and the 
details of the suggested LDR-HE model.

3.1 � Histogram equalization (HE)

Histogram indicates color distributions of an image. It 
also depicts the number of pixels in each of color ranges 
that span the set of all colors. Histogram equalization 
mainly boosts the overall contrast. Most common color 
intensities are equally dispersed on the histogram via this 
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regulation to obtain higher contrast. This technique is very 
advantageous for images that have both a bright and dark 
background and foreground. Conventional HE techniques 
firstly transform the signals into a frequency domain to 
perform some manipulations. Then, the signals are simply 
restored by a reversible operation to get a processed image. 
However, throughout this process an increase in the exist-
ing background noises might occur while some necessary 
signals are reduced.

3.2 � Haar wavelet transform (HWT)

Wavelets, which are an efficient tool for analyzing data, 
are mathematical functions developed to sort data by fre-
quency. The wavelet transformation converts data from 
spatial domain to frequency domain, and it stores each 
component on the corresponding resolution scale. A wave-
let represents an orthogonal basis of a vector space. The 
forward Haar transform might be essentially described as 
both averaging and differencing. The partial Haar function 
�(t) for high pass and the scaling function �(t) for low pass 
are represented in Eq. 1.

For an input which are represented by a list of 2n num-
bers, the HWT might be considered to plainly pairing up 
input values, saving the difference, and passing the sum. 
Recursively, this procedure repeats itself by pairing up 
the sums to afford the next scale: lastly resulting in 2n−1 
differences and one final sum. Let X be a vector with N 
values (bins), X =

[
x1, x2,… , xN

]
 , where N  should be the 

power of 2 . The number of the total recursive steps ( Ω ) 
for a wavelet transform is obtained by log2 N  . Then, the 
average of pair-wise numbers in the vector ( sk ) for low 
pass and the directed distances of pair-wise numbers ( dk ) 
for high pass are calculated in the Formula 2 as follows:

(1)

𝜓(t) =

⎧
⎪⎨⎪⎩

1 t ∈
�
0, 1∕2)

−1 t ∈
�
1∕2, 1)

0 t ∉ [0, 1)

𝜓
j

i
(t) =

√
2j × 𝜓

�
2jt − i

�
,

j = 0, 1,… and i = 0, 1,… ,
�
2j − 1

�
, t ∈ ℝ, {i, j} ∈ ℤ

𝜑(t) =

�
1 0 ≤ t < 1

0 otherwise

(2)
sk =

(x2k+x2k+1)
2

dk =
(x2k−x2k+1)

2

for k = 0,… ,
(
N

2
− 1

)

The second data list d is obtained so that the original 
vector X can be restored from d and s as X → [s|d] . The 
process is invertible since:

Finally, the vector in the inverse operation is decom-
posed and mapped as:

3.3 � LDR‑HE (low dynamic range histogram 
equalization)

Figure 1 represents the overall structure of the proposed 
LDR-HE transformation model. An image is firstly trans-
formed from spatial domain into frequency domain by 
Q-DHWT. The quantization part in the sub-band softens 
the high frequencies including natural noises. Namely, 
high-frequency amplitudes in the frequency domain are 
dumped in order to eliminate existent noises. Then the 
suppressed signals are inversed again in the reconstruction 
phase to get an image in higher contrast. At the final step, 
the original image and the processed image are compared 
in terms of a set of performance metrics.

In this study, an integration of Quantized Discrete HWT 
on 1D normalized histogram (PMF) of 2D image is pre-
sented. Since the histogram bins can contain a value that 
is a multiple of 2 ( 2n where n = 8), HWT becomes appli-
cable. Q-DHWT separates any signal into two bands: high 
pass and low pass sub-bands. The low pass band keeps 
the mean value of the inputs whereas the high pass band 
keeps the differences between the inputs. These differences 
indicate how the signal is changing in the multi-resolution 
framework of HWT. Knowing the noise generally exists in 
high dynamic range, the principle is to reduce the dynamic 
range of the input vector to a lower standard deviation. 
Hence, illumination variations and existing noises are sup-
pressed so that image quality is enhanced while perform-
ing the procedures.

The LDR-HE transformation function y = T(x) applies a 
particular Quantized Discrete HWT �f (x) on the quantized 
PMF (Q-pmf) and calculates the CDF as follows:

(3)x2k = sk + dk =

(
x2k + x2k+1

)
2

+

(
x2k − x2k+1

)
2

(4)x2k+1 = sk − dk =

(
x2k + x2k+1

)
2

−

(
x2k − x2k+1

)
2

(5)
[
x1, x2,… , xN

]
→ [s|d] = [

s1,… , sN∕2|d1,… , dN∕2
]

(6)Q_pmf
(
xi
)
=

{ xi

𝛼
, ||xi|| > 𝜇high_freq

xi, otherwise
(||xi|| ≤ 𝜇high_freq

)
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where xi is the the ith HWT coefficient in the high-pass band 
of an input image x. �high_freq and �high_freq are the mean value 
and the standard deviation of the absolute HWT coefficients, 
respectively. Actually �high_Pass is the threshold value for 
each xi signals. In the HWT transform, the first coefficient 
bin is the mean value of the whole sequence. The cumu-
lative distribution function cdfx(i) corresponding to px can 
be called an accumulated and normalized histogram. The 
quantized probability mass function Px(i) is the normalized 
probability in between [0, 1] for a pixel of level i . L is the 
total number of color intensities, generally 8 bits.

In Eq. 7, c is a constant coefficient, generally in between 
(1, 10] to empower the ratio of standard deviation and mean. 
In the experimental studies, c is tested from 1 to 100. The 
most suitable c is observed as 8 for the best performance. 
� is actually the coefficient of variation (CV) of the HWT 
signals. CV is simply the ratio of �∕�.

As a new contribution, this Q_pmf
(
xi
)
 function plays a 

crucial role in the LDR transformation, since it softens the 
higher amplitudes. The amplitudes of the signals are derived 
from the absolute value of signals with ||xi|| . If the signal 
amplitude xi is greater than the threshold ( �high_freq ), it is 
divided by the alpha ( � ) parameter to reduce its strength. 
Alpha is the damping factor which decreases the amplitude 
of oscillations. In other words, it weakens the higher ampli-
tudes of the frequencies in the high pass spectrum. In low 
dynamic range histogram equalization (LDR-HE), the value 

(7)� = c ×
�high_freq

�high_freq

= c ×

�
1

N−1

∑N

i=1

���xi�� − �high_freq

�2
1

N

∑N

i=1
��xi��

(8)cdfx(i) = Px(i) ×

i∑
j=0

�Q_pmf (xi), i ∈ [0, L − 1]

of � parameter can be in between [1, +∞) which represents 
the empowered strength of CV. If � is set to 1.0, the conven-
tional HWT procedure solely is applied. The more � value 
there is, the more reductions of the amplitudes there are in 
the signal power.

Alternatively, the alpha parameter can also be defined as 
the signal-to-noise ratio (SNR) as described in Eq. 9 [32]. 
SNR is basically the inverse form of CV. Thus, in the Q-pmf 
function (Eq. 10), � should become a multiplier. In the 
experimental studies, exactly similar experimental results 
have been taken with SNR if the c constant is set to a real 
number in between (0, 1].

Instead of the color intensity histogram, a new array is 
created with the absolute values of the high pass coefficients 
in the high pass band because it is more logical to calcu-
late the contrast based on edge magnitudes rather than color 
intensities. Increasing the contrast value ordinarily makes 
the edge lines appear clearer, since the edge information is 
kept in the high pass band.

If the absolute value (magnitude) of high frequency val-
ues is greater than the average ( �high_freq ) of the coefficients, 
it is divided by the CV value in order to increase the contrast 
of low-contrast images. This operation is performed for the 
frequencies which have greater amplitude values than the 
mean amplitude. Therefore, by reducing the high altera-
tions in the frequencies, high dynamic range becomes low 
dynamic range.

(9)� = SNR = c ×
�high_freq

�high_freq

(10)Q_pmf
(
xi
)
=

{
xi × 𝛼, ||xi|| > 𝜇high_freq

xi, otherwise
(||xi|| ≤ 𝜇high_freq

)

Fig. 1   LDR-HE flowchart
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In the inverse operation in HWT, since the mean value 
(the first value of the vector) in the low pass band is not 
manipulated by any means, a new histogram is created from 
the fixed (unchanging) coefficients with reduced frequency 
coefficients to preserve the total signal strength. It is very 
crucial to remain the mean value in the first index of the vec-
tor unchanged. Thus, this new processed histogram finally 
becomes a low dynamic range histogram.

When HE is done separately in each color channel, both 
the cumulative dynamic range and the overall contrast 
increase are acquired as well. If contrast stretching is per-
formed from a lower range, the cumulative contrast is abso-
lutely enhanced more than normal. As an example, when an 
800 × 600 image is constructed from a 640 × 480 image, the 
quality definitely decreases whereas the contrast increases. 
On the other hand, when an 800 × 600 image is constructed 
from a 320 × 240 image, the quality decreases a lot and the 
contrast increases much more. This is exactly what it is done 
in LDR-HE by decreasing the dynamic range. A histogram 
equalization is created from the lower range. Thus, the con-
trast increases even more than the conventional methods. 
Furthermore, the quality of images does not deteriorate 
much since the dynamic range of the frequencies is reduced.

If the signal’s absolute change is above the mean of high-
pass values, then the corresponding histogram bin is updated 
with the alpha parameter in CV. The more alpha there is, 
the more dynamic range of histograms is reduced. With 
the help of this method, the frequencies with high changes 
in the histogram are dumped and the contrast is increased 
after the inverse operation. This suggested LDR-HE method 
stands as a novel technique to enhance the image quality 
while adjusting the dynamic range by filtering wavelet coef-
ficients. The technique is applied to the Q-pmf which is the 
normalized version of the histogram. By this method, the 
PMF signals are boosted while the mean value of the PMF 
is being preserved. After obtaining the boosted PMF, CDF 
is constructed to achieve a better histogram equalization.

These manipulations of the high-frequency components 
make the edge lines more noticeable. This leads to the pres-
ervation of image quality. If the same operation of LDR 
is performed in the spatial domain, the quality would have 
been dramatically reduced, and the total time complexity 
will completely increase.

On the other hand, the standard deviation of an input 
image can dramatically decrease when a higher alpha 
parameter is set. Low standard deviation values indicate 
high uniform distributions, and it results contrast increases 
in the processed image. This reduction in standard deviation 
indicates the improvement in the image quality by stretch-
ing the bins in the frequency domain. This simple operation 
exactly provides a dynamic range reduction. It is impor-
tant to emphasize that lower standard deviation indicates a 

uniform distribution, namely a contrast enhancement opera-
tion. Additionally, when the standard deviation decreases, 
the dynamic range also decreases.

LDR-HE apparently softens drastic and sudden changes 
in the color bins so that the details in the image can be 
visually observed by changing the standard deviation 
values. The entropy is also increased since the variety in 
color intensities is increased in order to create a uniform 
distribution.

where L is the color capacity. Equation 11 indicates that the 
summation of color bins for each input and processed images 
is almost correlated to each other. This facility of LDR-HE 
provides a framework which is trying to preserve the mean 
brightness. In practical applications, the division of the color 
bins with an alpha parameter results very sensitive floating 
point numbers. Since the outputs are rounded in calculations, 
the values of color intensities may also vary. This situation 
causes some negligible increase in brightness. As a result, 
LDR-HE apparently softens drastic changes in color bins 
so that the details in the image can be easily observed. In 
conclusion, this simple operation simply provides a dynamic 
range reduction.

3.4 � Time and space complexities of LDR‑HE

The time complexity of LDR-HE in Big-O notation is as 
given in the expanded formula 12 as:

where, respectively, I is the acquisition cost for a gray level 
image, X is the construction cost for the 1D HWT bins (gen-
erally 28), log2 N is the cost of recursive steps for the forward 
HWT operation phase, X is the quantized PMF operation, 
log2 N is reconstruction phase of HWT, and finally I is the 
creation of output image. The summarized complexity is 
as O

(
I + X + log2 N

)
 since the coefficients are negligible in 

the complexity theory. The space complexity also is only as 
O(X) because of the 1D vector for HWT bins. As there are 
very tiny complexity components, the computational time 
of LDR-HE becomes very small when compared with the 
others.

(11)

L−1

∫

0

xiP
(
xi
)
dx ≅

L−1

∫

0

yiP
(
yi
)
dy

(12)O
(
I + X + log2 N + X + log2N + I

)
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4 � Experimental results and discussion

LDR-HE is implemented in Java, and comparative perfor-
mance studies are conducted in the MATLAB 2021a envi-
ronment by using a computer with normal specifications. 
Basically, all the experiments have been performed on the 
CSIQ benchmarking dataset [33] consisting of 30 RGB 
images in 512 × 512 resolutions with different distortion 
levels. Some of the images have low/average/high contrasts. 
Some parts of an image also have purposely low/average/
high contrasts.

4.1 � Image quality measurement criterions

Evaluation of image quality occurs when it is necessary to 
measure the fidelity of the encoded copy of the image com-
pared with the original version. Quality assessments provide 
objective quantitative measurements. For this study, six dif-
ferent types of fundamental and modern assessment met-
rics are preferred to measure the performance and accuracy 
of the methods. Apart from the metrics described below, 
some other well-known metrics have been previously imple-
mented and experimental results have been taken. The full 
extended outputs can also be received from the website [34] 
for examinations. The excluded metrics are SSIM (Structural 
Similarity Index), PCC (Pearson 2-D correlation coefficient), 
PCQI (Patch-based Contrast Quality Index), and MI (Mutual 
Index). Since these tools are not directly related to the HE 
assessments, they are not included into this study. In HE 
quality assessment, looking at one or two metrics alone is 
clearly leads to misinterpretations. Therefore, a particular set 
of metrics should be evaluated together for a better decision.

4.1.1 � Mean squared error (MSE) and peak signal‑to‑noise 
ratio (PSNR)

MSE and PSNR are the well-known criterions used to evalu-
ate the performance of manipulations. MSE shows the mean 
of the cumulative square error between filtered and original 
images [35]. Higher MSE value indicates the existence of 
noises in the image. PSNR is simply the logarithmic inverse 
of MSE which shows the measure of the peak error [36]. 
Obviously, the maximum similarity is achieved when the 
MSE is equal to zero. PSNR in decibels units calculates the 
peak signal-to-noise ratio between input and output images. 
Shortly, lower MSE and higher PSNR are better [37].

4.1.2 � Quality‑aware relative contrast measure (QRCM)

Another novel and modern metric for quality assessments 
in HE operations is QRCM [38]. It considers both the 

distortions resulting from the enhancement process and 
the level of relative contrast enhancement between test and 
processed images. This measure produces a real number in 
between [− 1.0, 1.0] where 1.0 refers to a full improvement 
and -1.0 refers to a full level of contrast degradation. This 
measurement employs the gradient magnitudes of input 
and output images in order to calculate image quality deg-
radation and the relative contrast change. QRCM focuses 
of contrast changes when there is an important difference 
between the gradients of input and output images. QRCM 
both measures the relative change of contrast and the dis-
tortion introduced on the output image relative to the input 
image. As a result, a value of QRCM close to zero is better.

4.1.3 � Universal image quality index (UIQ)

UIQ is designed by modeling a combination of three compo-
nents: loss of correlation, contrast distortion, and luminance 
distortion. In the Eq. 13, the UIQ value is the product of 
three components [39].

where x and y are original and reconstructed images, respec-
tively. x and y are the means of the images. �x and �y are 
the standard deviations. The first component is about the 
linear correlation coefficient between x and y, in the range 
of [− 1, + 1]. The second component calculates how close 
the mean luminance is between original and reconstructed 
images. This component is in the value range of [0, 1]. The 
third component, which is in the range of [0, 1], measures 
how similar the contrasts of the images are. This quality 
metric forms a combination of these three factors: luminance 
distortion, contrast distortion, and loss of correlation. Con-
sequently, the UIQ value is between − 1.0 and + 1.0 where 
the highest value occurs only when original and enhanced 
images are identical.

4.1.4 � Contrast Improvement Index (CII)

Contrast of an image might be basically explained as the 
difference between maximum and minimum pixel intensity. 
Particularly, it is the difference in luminance or color for 
a group of objects within the same field of view. In this 
study, edge-based contrast measure (EBCM) is preferred 
[40]. Since this metric is based on the fact that an improved 
image naturally has more edge pixels than the input image, 
EBCM determines the intensity of edge pixels. The con-
trast improvement ratio can be found CII = EBCM(Y) / 
EBCM(X). It is true that lower and much higher ratios are 
obviously worse. However, a little increase in CII is better 
while keeping MSE and AMBE values smaller.

(13)UIQ(x, y) =
�xy
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4.1.5 � Absolute mean brightness error (AMBE)

AMBE measures the difference of intensity value between 
input and output images as seen in formula 14:

where N and M are the image sizes. A zero AMBE value 
denotes full brightness preservation. Slightly higher AMBE 
might be accepted as satisfactory. If AMBE is very high, it 
is apparently inconvenient.

4.2 � Quantitative analysis of alpha parameter 
in LDR‑HE

All tests are run on the same benchmarking dataset to com-
pare with each other using 6 number of image quality met-
rics such as PSNR, MSE, QRCM, UIQ, CII, and AMBE. In 
a HE process, all the metrics but MSE should give higher 
values for better performance. But, AMBE should be closer 
to 0 since higher brightness damages the intensity values. 
Unfortunately, there is not only one metric for successful 
quality assessments in histogram equalizations and contrast 
enhancements. This suit of metrics should be examined 
together in order to observe how the performance is cor-
related with the coefficient parameter, c.

In the experimental studies, it is observed that the out-
puts of the quality metrics for both gray scale and RGB 
are almost correlated to each other. Thus, RGB outputs are 

(14)AMBE =

||||||
1

NM

N∑
i

M∑
j

X(i, j) −
1

NM

N∑
i

M∑
j

Y(i, j)

||||||

represented in this paper since its luminance gives higher 
visual perception.

As a damping factor, the alpha parameter requires an 
appropriate value of the constant coefficient (c) in the cal-
culation of �∕� (coefficient of variation) to perceive the best 
enhancement. To find out the appropriate coefficient, a set of 
experimental procedure, starting from 1.0 to 100.0, is con-
ducted as it is seen in Table 1. The coefficient is increased 
sequentially for assessment. The system is also tested with 
the high c values such as 10, 20, 30, 40, 50, and 100. These 
experimental results are taken over the 30 test images. In 
each cell of Table 1, the first value is the mean and after the 
sign ± the second value is the standard deviation.

The main purpose in HE operations is to increase contrast 
as possible as without damaging the intensities. The con-
trast improvement is analyzed by the PSNR, CII, and QRCM 
metrics. The brightness gain is calculated with AMBE. The 
similarity between input and output is checked with UIQ. 
The error rate in the processed image is measured with MSE. 
By checking these metrics together, a feasible and accurate 
assessment can only be made.

According to the results of Table  1, as the α value 
increases, both dynamic range and the gain in standard devi-
ation decreases. Therefore, the output of the system resem-
bles the original image since the α weakens the amplitude of 
signals by blocking the histogram synchronization.

MSE and contrast have a negative logarithmic correlation 
with the alpha parameter, when there is a sequential incre-
ment on the c parameter. UIQ roughly quantifies the proxim-
ity between input and output images like the SSIM and MI 
metrics. In case of higher c values, the UIQ converges to 

Table 1   The LDR-HE performances according to the coefficient (c) of alpha (α)

Coeff. c PSNR (higher 
is better)

MSE (lower is better) QRCM (close to 
0 is better)

UIQ (higher is better) CII (slightly 
higher is better)

AMBE (lower is better)

1 13.8 ± 4.9 4895.8 ± 5892 − 0.217 ± 0.1 0.72 ± 0.22 2.97 ± 4.28 39.79 ± 38.9
2 19.6 ± 5.0 1365.9 ± 1812 − 0.105 ± 0.1 0.83 ± 0.20 1.99 ± 2.01 20.82 ± 20.8
3 23.0 ± 4.9 614.9 ± 811 − 0.067 ± 0.1 0.87 ± 0.18 1.66 ± 1.36 14.11 ± 13.8
4 25.4 ± 4.8 350.9 ± 459 − 0.048 ± 0.0 0.88 ± 0.17 1.46 ± 0.87 10.78 ± 10.4
5 27.2 ± 4.7 228.5 ± 296 − 0.038 ± 0.0 0.89 ± 0.16 1.31 ± 0.50 8.78 ± 8.3
6 28.6 ± 4.7 161.8 ± 209 − 0.031 ± 0.0 0.91 ± 0.15 1.23 ± 0.34 7.46 ± 7.0
7 29.8 ± 4.6 120.9 ± 154 − 0.026 ± 0.0 0.91 ± 0.14 1.19 ± 0.27 6.50 ± 6.0
8 30.8 ± 4.5 94.1 ± 119 − 0.023 ± 0.0 0.92 ± 0.14 1.17 ± 0.23 5.78 ± 5.2
9 31.7 ± 4.4 76.0 ± 94 − 0.020 ± 0.0 0.92 ± 0.13 1.15 ± 0.20 5.22 ± 4.7
10 32.4 ± 4.3 62.6 ± 77 − 0.018 ± 0.0 0.92 ± 0.13 1.13 ± 0.18 4.77 ± 4.2
20 36.9 ± 3.9 19.9 ± 21 − 0.009 ± 0.0 0.94 ± 0.10 1.06 ± 0.08 2.79 ± 2.2
30 39.1 ± 3.9 11.4 ± 10 − 0.006 ± 0.0 0.95 ± 0.08 1.04 ± 0.05 2.14 ± 1.6
40 40.4 ± 3.9 8.4 ± 7 − 0.005 ± 0.0 0.96 ± 0.08 1.03 ± 0.04 1.83 ± 1.3
50 41.2 ± 3.8 6.8 ± 5 − 0.004 ± 0.0 0.96 ± 0.06 1.03 ± 0.03 1.64 ± 1.1
100 43.2 ± 4.1 4.7 ± 5 − 0.002 ± 0.0 0.97 ± 0.05 1.02 ± 0.02 1.29 ± 0.9
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nearby one and both QRCM and MSE converges to nearby 
zero.

These results indicate the strong similarity level between 
the original and processed images. For instance, if c is set 
to a very high value, e.g. 100, there is a slight change in 
the output image. Moreover, the contrast remains almost 
the same and there is a meagre brightness acquisition. As a 
result, the high value of c produces very low MSE results; 
however, it decreases the CII and AMBE rates at the same 
time.

It is noticed in empirical applications that both the nega-
tive values and real numbers in between [0, 1) for the coef-
ficient c produces annoying artifacts in the processed image. 
Similarly, if the coefficient c is set to 1, the result of the 
� parameter becomes smaller than 1.0 since the formula 
� = c × �∕� . Consequently, if the � is smaller than 1.0, it 
does not damp the magnitudes of the high frequency signals. 
It should be emphasized that if the � is equalized to 1.0 with 
an appropriate c coefficient, the convolutional HWT without 
any extra operation becomes applicable. In each test image, 
if the � is equalized to 1.0 with different c values, it can be 
accepted as the initial reference state of HWT.

In Table 1, it is observed that if the c is set to a small 
value, excessive contrast improvement (CII) occurs with 
high MSE rates. Higher CII values are not preferable 
because of produced annoying artifacts. The system gives 
more satisfactory results when c is gradually increased. The 
appropriate c value in fact can be decided according to the 
needs. The balanced c value should be defined by checking 
the results of metrics. Actually, this embedded facility ena-
bles an adjustable and scalable HE mechanism.

This table also indicates that image quality is increased 
and the amount of noise within the dynamic range is reduced 
while increasing the coefficient c. In order to find the con-
trast-saturated level of c, in the experiments c is increased 
gradually. It is observed that there are no more concrete 
changes after c = 8 . The best saturated c value to compete 
with the other well-known methods is figured out as 8 when 
the outputs are checked.

LDR-HE is also very sensitive to its c parameter. Since 
LDR-HE performs histogram equalization in low dynamic 
range depending on the parameter, the contrast value of 
pictures logarithmically decreases when the c value is 
increased. On the other hand, PSNR values increase loga-
rithmically while MSE values decrease. It proves that image 
quality and structural similarity are increased by the amount 
of coefficient.

The positive or negative logarithmic correlations with 
alpha are caused by Quantized Discrete HWT in which the 
contrast (standard deviation) in the picture is decreased by 
the amount of alpha coefficient while preserving the mean 
brightness since HWT keeps the mean value of any input 
vector constant throughout the operations.

Furthermore, HE enhances the image quality by boost-
ing the contrast in a low dynamic range in which noise ele-
ments do not generally exist. By this method, the histogram 
is equalized with less amount of noise and better results are 
obtained with respect to the other existing methods.

4.3 � Qualitative analysis of alpha parameter 
in LDR‑HE

Since the resolution of the test images is very big for visual 
comparisons, a special section is cropped from the family 
and roping images in Figs. 2 and 3, respectively, to assess 
the details easily. One of these values {1, 2, 3, 5, 8, 50, 10} 
is assigned to the c factor in order to analyze its effects both 
qualitatively and quantitatively.

First of all, when the coefficient c is set to 1, it gives an 
unsuccessful result with the highest MSE value when com-
pared with the others. When c = 1, some visual distortions 
inevitably appear since the alpha is equalized a smaller value 
than 1.0. In these cases, the high frequency signals cannot 
be suppressed.

In the original image in Fig. 2, the six geometrical light 
rays around the sun are simply noticeable. When the c is 
set to 1, 2, 3, or 5, the six ray beams are intertwined. It is 
apparent that image information is totally lost around the 
sun. Besides, there are some excessive numerical results of 
MSE, CII, and AMBE. Additionally, when the c is set less 
than or equal to 5, these annoying cases occur in the image. 
Firstly, some improved noises over the falling lights onto 
the sea are generated. Secondly, the actual color intensities 
of the family image are strongly manipulated. Lastly, the 
geometrical segments in the sky also are overlapped. This 
situation is obviously accepted as annoying artifact.

However, when c is set to 8, it becomes very easy to 
notice the light beams separately. At this stage, the contrast 
gain (CII) is 1.56 with a low error rate (MSE = 339). For 
this specific test case, the balanced c factor should be 8. The 
foreground can be easily and apparently extracted from the 
background in this image after the histogram equalization 
process.

In contrast, when c = 100, the minimum MSE, CII and 
AMBE values and the maximum PSNR, QRCM, UIQ values 
are received. The numerical results indicate a statement that 
when the coefficient is set to 100, the original and processed 
images becomes almost identical. Greater c coefficient val-
ues slightly increase the PSNR value; in fact, it does not 
make any improvement in the contrast at all. When c = 8, a 
balanced output is received.

Since the cropped section from the roping image has very 
dark and very bright sections, it is not easy to process. In 
Fig. 3, enormous contrast enhancement and over-luminance 
can be seen both visually and numerically when the c is set 
to less than or equal to 5. Also, the AMBE and MSE values 
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are noticeably very high. The patterns in the striped shirt can 
be seen when the c is set to 5 or more. Again, the processed 
image visibly looks very similar to the original in higher 
c parameters. Correspondingly, the ideal coefficient should 
be set to 8 for the roping image since the highest QRCM 
value is received at this level. In these family and roping test 
images, noises can be visually and numerically detected in 
the images where there are higher MSE results.

4.4 � Quantitative performance comparisons

The most important and most cited HE techniques are com-
pared with the proposed one in terms of different types of 

quality metrics. An extensive benchmarking study is per-
formed by these methods:

	 1.	 LDR-HE (Low Dynamic Range HE)
	 2.	 HISTEQ (Global HE or Conventional HE)
	 3.	 CLAHE (Contrast Limited Adaptive HE) [12]
	 4.	 LHE (Local HE)
	 5.	 MMSICHE (Median-Mean-Based Sub-Image-Clipped 

HE) [19]
	 6.	 BPDFHE (Brightness preserving dynamic fuzzy HE) 

[15]
	 7.	 EHS (Exact histogram specification) [13]
	 8.	 ESIHE (Exposure-based Sub-Image HE) [20]
	 9.	 BBHE (Mean preserving Bi-HE) [16]

Fig. 2   Cropped sections from the family image

Fig. 3   Cropped sections from the roping images
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	10.	 MMBEBHE (Minimum Mean Brightness Error 
Bi-HE) [18]

	11.	 DSIHE (Dualistic Sub-Image HE) [17]
	12.	 RMSHE (Recursive Mean-Separate HE) [24]
	13.	 RSIHE (Recursive Sub-Image HE) [23]
	14.	 RSWHE (Recursive Separated and Weighted HE) [22]
	15.	 NMHE (Non-parametric modified HE) [21]

The achievements of the presented method can be com-
pared by analyzing the results in Table 2. The first val-
ues are the means over the dataset. The real values after 
the ± sign are the standard deviations. Lower standard 
deviation is better. The best performances in each column 
are marked in bold for a global comparison. The algo-
rithmic structure of the methods in the comparison list 
has been explained in the literature section. Since the HE 
methods are in the categories of global, local, adaptive 
or recursive, the test results might differ from each other.

According to results in Table 2, LDR-HE overwhelms 
the existing methods in terms of the quality metrics. 
According to the UIQ criterion, LDR-HE keeps the struc-
tural similarity with respect to original images much more 
than the others. Additionally, the MSE for LDR-HE is the 
smallest of all. The performance of the HE methods is 
also measured with PSNR where the proposed method 
overwhelms when compared with the existing methods. 
When the contrast achievement rate (CII) is around 1.17, 
LDR-HE method attains 94.1 MSE rate while BPDFHE 
reaches 112.3 MSE rate.

There is a strong correlation between AMBE and MSE 
error rates. If one of them is high, the other is high also. 

Thus, this relationship indicates that brightness improve-
ment produces some errors in the color intensities.

Furthermore, there is a noise factor in the test images. 
These noises are also enhanced during most of the HE meth-
ods. Therefore, the CII and PSNR metrics cannot be solely 
employed in comparisons, the MSE, QRCM, and UIQ met-
rics should be considered together. Some of the methods 
have some drawbacks such as over increase in contrast while 
producing more MSE rates. These HE methods increase 
MSE values uncontrollably by stretching of histograms bins 
equally by force over the range. LDR-HE with a user-defined 
parameter can adjust the enhancement degree by a potenti-
ometer (regulator), the alpha parameter.

LDR-HE is trying to suppress the brightness gain also. 
When compared with the other methods, LDR-HE is the 
fourth one which keeps the brightness gain minimum. In an 
ascending order, the AMBE values of these methods BPD-
FHE, MMSICHE, and ESIHE are 0.04, 3.12, 5.29, respec-
tively. However, the overall contrast improvement and mini-
mum error rates in terms of QRCM and MSE are lower than 
LDR-HE’s. Besides, the structural similarity performance of 
LDR-HE in terms of UIQ is not much lower than MMSICHE 
and BPDFHE.

4.5 � Qualitative and visual performance 
comparisons

Figures 4, 5, and 6 objectively and subjectively present 
the whole performances of the methods. All the processed 
images in their original sizes by these algorithms can be also 
downloaded from the website [34] for examination since 

Table 2   Total experimental comparative results

PSNR (higher is better) MSE (lower is better) QRCM (close 
to 0 is better)

UIQ (higher is better) CII (slightly 
higher is bet-
ter)

AMBE (lower is better)

LDR-HE 30.81 ± 4.5 94.1 ± 119 − 0.023 ± 0.0 0.92 ± 0.14 1.17 ± 0.23 5.78 ± 5.23
CLAHE 16.97 ± 2.2 1454.9 ± 618 − 0.264 ± 0.1 0.81 ± 0.12 1.62 ± 0.96 15.94 ± 10.47
HISTEQ 15.82 ± 4.2 2489.6 ± 2137 − 0.183 ± 0.1 0.76 ± 0.19 2.22 ± 2.27 28.16 ± 22.74
BPDFHE 30.09 ± 5.2 112.3 ± 115 − 0.058 ± 0.1 0.94 ± 0.07 1.04 ± 0.18 0.04 ± 0.04
EHS 15.96 ± 4.1 2374.2 ± 1991 − 0.197 ± 0.1 0.77 ± 0.19 2.22 ± 2.27 27.76 ± 22.21
ESIHE 26.50 ± 5.1 277.9 ± 386 − 0.072 ± 0.1 0.92 ± 0.10 1.47 ± 1.27 5.29 ± 5.49
LHE 10.27 ± 2.3 7087.4 ± 4446 − 0.442 ± 0.1 0.70 ± 0.15 2.67 ± 3.24 37.31 ± 30.63
MMSICHE 28.68 ± 3.8 131.1 ± 143 − 0.066 ± 0.1 0.95 ± 0.06 1.14 ± 0.38 3.12 ± 3.19
BBHE 22.17 ± 5.7 686.9 ± 565 − 0.134 ± 0.1 0.87 ± 0.14 1.38 ± 0.72 13.60 ± 10.85
MMBEBHE 19.17 ± 5.0 1267.9 ± 1093 − 0.165 ± 0.1 0.85 ± 0.15 1.88 ± 1.48 21.11 ± 12.90
DSIHE 21.83 ± 5.8 746.8 ± 621 − 0.139 ± 0.1 0.87 ± 0.14 1.41 ± 0.80 14.41 ± 11.39
RMSHE 19.81 ± 2.9 833.8 ± 614 − 0.036 ± 0.1 0.84 ± 0.08 1.12 ± 0.84 18.57 ± 11.58
RSIHE 19.57 ± 2.9 883.8 ± 618 − 0.046 ± 0.1 0.86 ± 0.07 1.17 ± 0.85 19.57 ± 11.45
RSWHE 21.21 ± 5.9 963.5 ± 1021 − 0.122 ± 0.1 0.88 ± 0.08 1.45 ± 0.89 17.95 ± 16.13
NMHE 25.90 ± 6.2 333.7 ± 414 − 0.066 ± 0.0 0.92 ± 0.11 1.61 ± 1.30 10.24 ± 7.95
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some image information and details in these tables might 
disappear in resized forms.

Figure 4 presents the snapshots and the full test results of 
the elk image. It is also low-contrasted image. If the MSE 
rates is obviously bigger, unpleasant artifacts even in the 
resized images can be clearly seen. In those images, there 
are very low UIQ and PSNR values. Likewise, there are 
greater AMBE and CII values. This collection of the results 
quantitatively signifies the worst process where there are 
unwanted noise amplifications and over intensity saturations.

In the elk images of HISTEQ, CLAHE, EHS, LHE, and 
MMBEBHE, it is observed that there is an over-enhance-
ment problem. These perceiving contrasts produce annoying 
artifacts which can be visually seen in the images. Further-
more, stimulated amplification of noise exist in these per-
ceived images. For instance, RSWHE shows better contrast 
enhancement with 1.776 CII and 16.37 PSNR values. But 
it gives poor brightness preserving with the 28.912 AMBE 
value. Some multi-HE methods like RMSHE, RSIHE, and 
RSWHE have given almost similar brightness and contrast 
enhancements since their algorithmic structure are similar 
to each other. They all recursively separate the histogram 

using median and mean in sub-histograms. The recursively 
iteration number is set to 1 in the experiments.

BBHE is a clipped HE method and it decomposes an 
image into sub-images using mean brightness error. DSIHE 
and MMBEBHE are in the same categorization. Actually, 
MMBEBHE is an extended version of BBHE. Therefore, 
MMBEBHE produces more CII rates. But, the AMBE 
and MSE rates are two or three times greater. This situa-
tion indicating a full gain without any loss cannot be pos-
sible. Besides, the quantitative results of BBHE and DSIHE 
are very correlated to each other. Likewise, the processed 
images are almost similar when zoomed.

BPDFHE partition the global histogram bin into multiple 
sub-histogram bins based on the local maxima. Hence, it 
is clearly a brightness preserving method with keeping the 
originality with − 0.018 QRCM and 0.961 UIQ values. How-
ever, the contrast gain is limited (CII = 1.146, PSNR = 29.13) 
and the error rate (MSE = 79.4) is greater than LDR-HE’s 
(MSE = 39.8). Also, LDR-HE has higher contrast achieve-
ments (CII = 1.162, PSNR = 32.13) with negligible bright-
ness improvement with a 4.581 AMBE rate. As it seen, this 
model has tried to reduce the brightness gain.

Fig. 4   Sample experimental results of HE methods over the elk image
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In Fig. 5, a special section including a family in the sun-
set is cropped from the original family image. This figure is 
almost the summary of the study by presenting both visual 
and numerical satisfactory results. In the cropped images, 
the unwanted artifacts around the sun can be easily recog-
nized in most of the methods. Besides, the color intensi-
ties are mostly manipulated in the family images by the 
HISTEQ, BPDFHE, EHS, ESIHE, LHE, RSWHE, NMHE, 
and MMBEBHE methods. Most of the sky in the images 
is not smooth as in the original. Furthermore, foreground 
and background in most of the results are intersected. It is 
true that the six light beams around the sun in the input 
image are in a certain shape, structure and pattern. However, 
the sun and its surrounding lights are distorted in most of 
the methods except LDR-HE, CLAHE, and NMHE. When 
these three methods are compared among them, the ideal 

numerical MSE, QRCM, AMBE results are taken without 
losing any image information. RMSHE and RSIHE produce 
the greatest QRCM results of all. However, there is a dra-
matic decrease in the contrast improvement (CII is lower 
than 1.0). It is definitely against the philosophy of HE. The 
third successful QRCM gain is received with LDR-HE 
where a satisfactory contrast gains with the 1.56 CII. These 
measurements demonstrate the successful accomplishments 
of LDR-HE.

In Fig. 5, the PSNR value of the proposed method is 
lower than BPDFHE’s. Even though the BPDFHE is quan-
titatively is better than LDR-HE, its color distribution, light 
beams, and sky are not pleasant when compared with LDR-
HE’s. In terms of PSNR, MSE, QRCM, UIQ, and AMBE, 
the most successful one is seemingly the LDR-HE method. 
However, in terms of AMBE, LDR-HE is not better than 

Fig. 5   Cropped sections from the family image
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CLAHE. CLAHE creates less brightness in the processed 
image. But, if these two algorithms are compared in terms 
of the most important metrics (PSNR, MSE, and QRCIM), 
the proposed method is definitely considered better.

In the output image of NMHE, the color intensities are 
strongly manipulated. The orange colors are transformed 
into almost yellow. In CLAHE, at the horizon, the purple 
color is transformed into blue. In CLAHE, the sky has also 
annoying artifacts and unwanted noises.

Unnatural appearances and annoying artifacts in Fig. 6 
can be visually analyzed. Besides, the selected assessment 
metrics can give satisfactory results to some extent. Figure 6 
also demonstrates the resized snapshots of the roping image 
in terms of six metrics. roping is a low-contrast image and 
not easy to equalize since there are sharp peaks in the histo-
grams, e.g., very dark and very bright colors together in one 
image. Additionally, normalizing the peaks is very hard for 

these methods. Hence, lower contrast occurs in most of the 
methods such as BPDFHE, RMSHE, RSIHE, RSWHE. They 
do not perform well in terms of the CII criterion. However, 
high contrasts in the processed images of CLAHE, HISTEQ, 
EHS, and LHE produce unnatural annoying artifacts. These 
methods over-brighten the roping image. Therefore, the 
cumulative contrast achievement is accepted as lower. The 
color distribution in each algorithm is different. Even though 
RMSHE and RSIHE have better QRCM values, they cannot 
present an equalized distribution in histogram.

When the experimental results in Fig. 6 is examined 
quantitatively, the best performance (the greatest QRCM) 
is taken with the RMSHE and RSIHE methods. However, 
there are dramatic losses in contrast when the CII results 
are examined. LDR-HE gives a balanced output with the 
numeric test results. The successful results of LDR-HE can 
be also visually examined. This actually indicates that the 

Fig. 6   The cropped roping image
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human visual system is more contrast-sensitive than quality 
metrics.

In the experimental results of the roping image, only the 
PSNR result of MMSICHE is bigger than the LDR-HE’s. 
Also, the MSE of MMSICHE is the lowest one. In this spe-
cial example, it seems that MMSICHE overwhelms LDR-
HE. However, when the QRCM and CII results are com-
pared between them, the overall HE performance is better 
in LDR-HE.

4.6 � Discussions

Local, global, adaptive, and recursive HE models are pre-
sented together in this study. In fact, it is not convenient to 
compare different types of HE methods in one study. Each 
HE method should be categorically compared with its rela-
tive methods. Also, there are some brightness preserving 
methods which should be handled in a different category. 
Some of the HE methods prevent over amplification while 
others do not. However, all the methods in one basket are 
evaluated in order to demonstrate the overwhelming perfor-
mance of LDR-HE.

It is a general fact that if there is a gain from a system, 
there should be an extra loss at the same time. In contrast, in 
this proposed model, the high-performance results similarly 
depend on an appropriate value of the alpha parameter. In 
addition, this presented scalable system distributes histo-
grams equally in low dynamic range by dumping the high 
frequencies where there are possible noises.

Most image contrast enhancement methods, as experi-
enced in this study, generate undesired results. In the con-
volutional methods, existent noises are also stretched in 
HE operations. Normally, noises are a great barrier for the 
performance of conventional methods. In this scope, LDR-
HE presents a scalable and successful contrast enhancement 
operation in the frequency domain. The modified HWT in 
the presented system removes this barrier providing that the 
noise points are minimized in low dynamic range. This type 
of a minimization cannot typically be performed by filtering 
in the spatial domain. With the help of LDR-HE, stretching 
noises are prevented.

Sharp ripples of signals in the frequency domain cannot 
be naturally detected in histogram and in spatial domain. 
This facility of detecting sudden changes in the frequen-
cies only exists in the frequency domain. Therefore, in 
the presented method designed in the low dynamic range, 
high ripples of the frequencies are decreased whereas 
low frequencies are increased. Also, the mean value of 
intensities remains constant; however, the standard devia-
tion gets lower. It has been analyzed, both mathematically 
and experimentally, that this proposed method produces 
an adjustable and controlled contrast enhancement with 
less error rate. LDR-HE might be recognized as a global, 

controlled, and adaptive HE method which enhances the 
contrasts with a lower time complexity. High frequency 
peaks are manipulated by an alpha parameter in order to 
eliminate the existent noises. The color intensities in all 
parts of the input image are manipulated by the proposed 
strategy. After the inverse transformation, LDR-HE also 
tries to preserve brightness as much as possible.

The primary purpose of this study is to prove how 
HWT is applicable on histograms in the frequency zone 
which can produce dynamic range reduction and contrast 
enhancement. Similarly, the proposed model enhances the 
picture quality by keeping the originality similar. In this 
system, HWT strengths the signal. Moreover, this paper 
proposes a novel modification technique while reducing 
the computational complexity. The main contribution 
of this study is that LDR-HE enhances image contrasts 
without any intensity saturation, noise amplification, over 
enhancement, and error rates. Extensive experimental 
studies indicate that this proposed scheme performs well 
in detail preservation and noise suppression.

In the proposed system, the DCT (discrete cosine trans-
form) has been previously tested instead of HWT. Similar 
experimental results have been achieved with DCT. The 
point in this study is not related to the wavelet transform 
model. The structure of the alpha parameter in the coef-
ficient of variations which is suited to the scheme is the 
key point in the presented HE operation.

5 � Conclusion

In this study, an image enhancement approach by apply-
ing the Quantized Discrete Haar Wavelet Transform 
(Q-DHWT) on histogram equalization is presented. The 
main contribution of the proposed method is to enhance 
the image quality while equalizing the histogram in the 
low dynamic range (LDR) by suppressing the possible 
noises located in the high dynamic range (HDR). As a 
new contribution, a fast and scalable improvement frame-
work is constructed by using a wavelet transform in order 
to eliminate naturally existing noises. Furthermore, the 
proposed model LDR-HE improves the diversity of color 
intensities throughout the image simultaneously and ade-
quately. Both the qualitative and quantitative experimental 
studies indicate that histogram equalization in LDR-HE 
generates satisfactory results. Additionally, the suit of the 
image assessment metrics is employed in benchmarking 
studies in order to demonstrate the performance compari-
sons. The empirical studies display the proposed method 
overwhelms the common methods in the literature by pro-
viding more uniform distributions in the histogram with 
a scalable system.
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