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Based on 586 pb−1 of e+e− annihilation data collected at a center-of-mass energy of 
√

s = 4.6 GeV
with the BESIII detector at the BEPCII collider, the absolute branching fraction of �+

c → pK 0
S η decays is 

measured for the first time to be B(�+
c → pK 0

S η) = (0.414 ± 0.084 ± 0.028)%, where the first uncertainty 
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is statistical and the second is systematic. The result is compatible with a previous CLEO result on the 
relative branching fraction B(�+

c →pK 0
S η)

B(�+
c →pK −π+)

, and consistent with theoretical predictions of SU(3) flavor 
symmetry.

© 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The lightest charmed baryon, �+
c , was first observed in the 

1970s [1,2], but only in the past few years has there been sig-
nificant progress in precision measurements of its absolute decay 
rates [3,4]. Driven by these improvements, the theoretical calcu-
lations of charmed baryon decays have greatly improved their 
treatment of non-perturbative effects [5–8]. However, more exper-
imental and theoretical efforts are needed to further improve the 
understanding of non-factorizable effects, which are non-trivial in 
the charmed baryon sector [7,9]. More experimental data are also 
desired to test existing theoretical predictions [10].

The hadronic decay �+
c → pK 0

S η offers important information 
about the dynamics of charmed baryon decays [11]. The charge-
conjugate mode is always implied throughout this Letter. The 
branching fraction (BF) B(�+

c → pK 0
S η) = B(�+

c → pK 0η)/2 =
(0.79 ±0.13 (stat.) ±0.13 (sys.))% has only been measured relative 
to �+

c → pK −π+ [12,13]. However, recent comprehensive theo-
retical analyses of different BFs for �+

c decays to three-body final 
states, which assume SU(3) flavor symmetry, predict that B(�+

c →
pK 0

S η) is in the range 0.35% to 0.45% [11,14]. There is a discrep-
ancy of approximately 2 standard deviations between the existing 
experimental result and those new theoretical calculations. Further, 
�+

c → pK 0
S η is regarded as an important channel to understand 

the properties of the intermediate N(1535) resonance [15,16]. The 
N(1535) resonance is puzzling because it decays to final states that 
contain strange hadrons, like ηN and K� [13,15,16], but it does 
not contain any s̄s component according to the naive constituent 
quark model. Thus, further measurements of the �+

c → pK 0
S η de-

cays may help to verify SU(3) flavor symmetry and may reveal the 
intermediate states contributing to these decays.

In this Letter, we present the first absolute measurement of the 
BF for �+

c → pK 0
S η decays based on an e+e− collision data sample 

corresponding to an integrated luminosity of 586 pb−1, collected 
at the center-of-mass energy of 

√
s = 4.6 GeV with the BESIII de-

tector [17] at the Beijing Electron Positron Collider (BEPCII) [18]. At 
this energy, the �+

c baryon is always produced along with a �̄−
c , 

and the energy remaining does not allow the production of any ad-
ditional hadrons. Besides, the previous analysis [19], based on the 
double tag method and the simultaneous fit along the 12 �+

c de-
cay channels, has reported the total number of �+

c �̄−
c pairs in the 

same data sample, which gives a chance to measure the absolute 
BF of the other �+

c decay channels. In this analysis, we use the 
single tag (ST) method in which the �+

c → pK 0
S η is reconstructed 

while the �̄−
c is not.

2. BESIII detector and Monte Carlo simulation

The BESIII detector is a magnetic spectrometer [17] located at 
BEPCII [18]. The cylindrical core of the BESIII detector consists of 
a helium-based multilayer drift chamber (MDC), a plastic scin-
tillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic 
calorimeter (EMC), which are all enclosed in a superconducting 
solenoidal magnet providing a 1.0 T magnetic field. The solenoid 
is supported by an octagonal flux-return yoke with resistive-plate-
counter muon-identifier modules interleaved with steel. The ac-
4

ceptance of charged particles and photons is 93% of the 4π solid 
angle. The charged-particle momentum resolution at 1 GeV/c is 
0.5%, and the dE/dx resolution is 6% for electrons from Bhabha 
scattering. The EMC measures photon energies with a resolution of 
2.5% (5%) at 1 GeV in the barrel (end cap) region. The time resolu-
tion of the TOF barrel part is 68 ps, while that of the end cap part 
is 110 ps.

Samples of simulated events produced with the geant4-based 
[20] Monte Carlo (MC) package, which includes the geometric de-
scription of the BESIII detector and the detector response, are 
used to determine the detection efficiency and estimate the back-
grounds. The simulation includes the beam energy spread and ini-
tial state radiation (ISR) in the e+e− annihilations modeled with 
the generator kkmc [21]. Two types of MC samples are generated 
in this analysis. The signal MC samples, in which the �+

c decays 
non-resonantly to �+

c → pK 0
S η while the �̄−

c decays into all pos-
sible channels, are used to determine the detection efficiency. The 
inclusive MC sample, which consists of the production of �+

c �̄−
c

pairs and open-charm mesons, the ISR production of vector char-
monium(-like) states, and the continuum processes incorporated 
in kkmc [21], is used to estimate the backgrounds. Known de-
cay modes are modeled with evtgen [22] using BFs taken from 
the PDG [13], and the remaining unknown decays from the char-
monium states are modeled with lundcharm [23]. The final-state 
radiation from charged final-state particles is incorporated using 
the photos package [24].

3. Event selection

In this analysis, all the charged tracks are required to satisfy 
| cos θ | < 0.93, where θ is the polar angle of the charged track with 
respect to the axis of the MDC. For the proton, the distance of clos-
est approach to the interaction point (IP) must be within ±10 cm
along the MDC axis (V z) and within ±1 cm in the plane perpen-
dicular to the MDC axis (Vr ). The particle identification (PID) al-
gorithm combines the dE/dx information from the MDC and flight 
time from the TOF to evaluate the likelihood L(h)(h = π, K , p) for 
the different final state hadron hypotheses; to be classified as a 
proton we require the charged track satisfies both L(p) > L(π)

and L(p) >L(K ).
We reconstruct K 0

S → π+π− candidates by combining two op-
positely charged tracks. For these tracks, the distance of closest 
approach to the IP must be within ±20 cm along the MDC axis. No 
requirement on either Vr or the PID likelihood is applied to max-
imize the efficiency. The two tracks are constrained to a common 
decay vertex by applying a vertex fit [3], and the corresponding 
χ2 is required to be less than 100. The momenta of the π+π−
pairs corrected by the vertex fit are used in the following analysis. 
Further, the distance of the decay vertex of the K 0

S from the IP is 
required to be larger than twice the estimated resolution. The in-
variant mass of the π+π− pairs, Mπ+π− , is required to lie in the 
mass region (0.487, 0.511) GeV/c2.

The η candidates are formed by photon pairs with their invari-
ant mass satisfying the requirement 0.500 GeV/c2 < Mγ γ < 0.565
GeV/c2. Here, the γ candidates are reconstructed from clusters in 
the EMC crystals that are not matched with any charged tracks. 

http://creativecommons.org/licenses/by/4.0/
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Fig. 1. One-dimensional projection plots of (a) MBC and (b) 	E distributions, as well as background reduced projection plots of (c) MBC (|	E| < 0.02 GeV) and (d) 	E
(2.28 GeV/c2 < MBC < 2.295 GeV/c2) with the fit results. Points with error bars are data, the solid red line is the total fit result, the blue-dashed line is the background 
contribution, and the green histogram is the background distribution from the inclusive MC sample.
The energy deposited in the nearby TOF counters is included in the 
photon reconstruction. The deposited energy of any cluster is re-
quired to be larger than 25 MeV in the barrel region (| cos θ | < 0.8) 
or 50 MeV in the end cap region (0.86 < | cos θ | < 0.92). The mea-
sured EMC time of the cluster, which is defined as the shower time 
recorded by the EMC relative to the event start time, is required to 
be within (0, 700) ns to suppress electronic noise and energy de-
posits unrelated to the event. A kinematic fit is applied to constrain 
Mγ γ to the nominal mass of the η meson [13]. The momenta of 
the γ γ pairs corrected by the kinematic fit are used for further 
analysis.

The �+
c candidates are formed by all combinations of proton, 

K 0
S and η candidates in an event. Two kinematic variables, the en-

ergy difference 	E ≡ E�+
c

− Ebeam and the beam-constrained mass 

MBC ≡
√

E2
beam/c4 − |�p�+

c
|2/c2, are defined to identify �+

c candi-

dates. Here, E�+
c

and �p�+
c

are the reconstructed energy and mo-

mentum of the �+
c candidates calculated in the e+e− rest frame, 

and Ebeam is the average energy of the e+ and e− beams. All the 
candidates are required to satisfy −0.07 GeV < 	E < 0.07 GeV and 
2.25 GeV/c2 < MBC < 2.3 GeV/c2. If more than one candidate in an 
event satisfies all the above requirements, the best candidate is se-
lected with the following sequence. First, we select candidates that 
contain the proton with the largest L(p). Second, if there are still 
multiple candidates, we select those that contain the K 0

S with the 
largest decay length in units of its resolution. Finally, if there are 
still multiple candidates after the proton and K 0

S requirements, we 
select the candidate that contains the η with the smallest χ2 re-
turned by the kinematic fit. About 16.9% of total events in data 
have multiple candidates, and the probability to select the correct 
candidate is 63.1% based on a MC study.

4. Signal yield and BF

To determine the signal yield of �+
c → pK 0

S η, an extended 
unbinned maximum likelihood fit is performed on the two-
5

dimensional distribution of MBC versus 	E . Based on the K 0
S side-

band (0.02 GeV/c2 < |m(π+π−) − m(K0
S)| < 0.03 GeV/c2) from 

data, and inclusive MC studies, no peaking background is found 
in either the MBC or 	E signal region. In the fit, the MBC and 
	E background shapes are modeled by an ARGUS function [25]
and a second-order Chebyshev polynomial function, respectively. 
The end point of the ARGUS function is fixed to the beam energy 
Ebeam = 2.3 GeV, while all the other parameters in the background 
function are free. The MBC and 	E background shapes are treated 
as uncorrelated based on MC validation. The signal shape is the 
MC-derived two-dimensional shape convolved with Gaussian func-
tions in each dimension, where the Gaussian functions compensate 
for the resolution difference between data and MC samples. The 
parameters of the Gaussian functions for 	E and MBC are fixed 
to the values determined from the corresponding one-dimensional 
fits in data.

Fig. 1 shows the one-dimensional projection plots of the fit re-
sults. The signal yield is obtained to be Nsig = 42.0 ± 8.5, where 
the uncertainty is statistical only. The statistical significance for 
the signal is 7.3σ , which is evaluated by the change of the like-
lihood between the nominal fit and the fit without the signal 
component [3,26]. And the significance including the systematic 
uncertainties is evaluated to be 5.3σ [27]. The detection effi-
ciency, which is estimated by using the signal MC sample, is 
ε = (17.57 ± 0.01)%. Thus, the absolute BF of �+

c → pK 0
S η can be 

obtained by

B(�+
c → pK 0

S η) = Nsig

2 × N�+
c �̄−

c
× Binter × ε

, (1)

where Binter = B(K 0
S → π+π−) ×B(η → γ γ ) is the product of the 

BFs of the intermediate states taken from the PDG [13], N�+
c �̄−

c
=

(105.9 ±5.3) ×103 is the total number of �+
c �̄−

c pairs in data [19], 
and the factor 2 is the factor related to the charge conjugation. 
Using Eq. (1), we calculate B(�+

c → pK 0
S η) = (0.414 ± 0.084)%, 

where the uncertainty is statistical only.
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Fig. 2. Distributions of (a) MpK 0
S

, (b) MK 0
S η and (c) Mpη in data and signal MC samples, in which points with error bars are data after the background subtraction, and the 

red-solid and blue-dashed histograms show the unweighted and weighted signal MC samples, respectively.
5. Systematic uncertainties

In this work, the systematic uncertainties on the BF measure-
ment include the uncertainties related to the PID and tracking 
of the proton, the reconstruction of the K 0

S and η, the two-
dimensional fit, the MC modeling, N�+

c �̄−
c

and the BFs of the in-
termediate states.

The uncertainties related to both the PID and tracking efficien-
cies of the proton are estimated to be 1%, respectively, based on 
a study of control samples of e+e− → pp̄π+π− and e+e− →
pp̄π+π−π+π− events in data at 

√
s > 4.23 GeV [19]. The un-

certainty associated with the K 0
S reconstruction is assigned to be 

2.5% based on studies of control samples of J/ψ → K ∗(892)∓ K ±
and J/ψ → φK 0

S K ∓π± decays [19]. We use a control sample of 
D0 → K −π+π0 events to estimate the uncertainty due to the η
reconstruction [28,29]. The π0 → γ γ reconstruction efficiencies 
are obtained in data and MC simulations, and an η reconstruction 
uncertainty of 1.8% is assigned by weighting the efficiency differ-
ence to the η momentum distribution of the signal samples.

The uncertainty associated with the two-dimensional fit con-
sists of the uncertainties of the signal and background shapes. 
To estimate the uncertainty, 20000 pseudo-data-sets are sampled 
with replacement data according to the bootstrap method [30]. 
For each pseudo-data-set, a two-dimensional fit is performed, in 
which the mean values and standard deviations of the two Gaus-
sian functions in the signal shape are randomly varied by ±1σ

around their nominal values, the endpoint of the ARGUS function 
is randomly varied by ±0.2 MeV around its nominal value, and the 
background shape of the 	E distributions is replaced by a first-
order Chebyshev polynomial function. The pull of the fit result 
p(Nsig) is defined as

p(Nsig) = Npseudo
sig − Nreal

sig

σ
pseudo
N

, (2)

where Nreal
sig is the fit yield of real data, Npseudo

sig and σ pseudo
N are the 

fit yield and its statistical uncertainty of the pseudo-data, respec-
tively. The distribution of p(Nsig) values is fitted with a Gaussian 
function, and the mean value is obtained to be −0.1364 ± 0.0074. 
The bias in p(Nsig) is 13.64% times the statistical uncertainty, 
which is calculated to be 2.8%, and as no correction for this bias 
is applied, we use 2.8% as the systematic uncertainty related with 
the two-dimensional fit.

The uncertainty related to the MC model of the signal process 
is evaluated by reweighting the signal MC sample, which is gener-
ated assuming no intermediate resonances, according to the MpK 0

S
, 

MK 0
S η and Mpη invariant mass distributions observed in data. Here, 

Mij is the invariant mass of the combination of particles i and j. 
6

Table 1
Systematic uncertainties.

Source Uncertainty (%)

Proton PID 1.0
Proton Tracking 1.0
K 0

S reconstruction 2.5
η reconstruction 1.8
Two-dimensional fit 2.8
Signal model 2.2
N�+

c �̄−
c

4.6
Binter 0.5

Total 6.8

Fig. 2 shows the distributions of these invariant masses in data af-
ter the background subtraction using the sPlot method [31] based 
on the nominal fitting. The detection efficiency based on the mod-
ified MC sample is calculated to be 17.19%, and the relative differ-
ence to the nominal efficiency, 2.2%, is taken as the corresponding 
systematic uncertainty.

The uncertainty of N�+
c �̄−

c
in data is reported to be 4.6% in 

Ref. [19]. The BFs of intermediate states from the PDG [13] are 
B(K 0

S → π+π−) = (69.20 ± 0.05)% and B(η → γ γ ) = (39.41 ±
0.20)%. The uncertainty from these two BFs, which is dominated 
by the latter one, is 0.5%.

The total systematic uncertainty, which is determined by adding 
all sources of systematic uncertainties in quadrature, is calculated 
to be 6.8%. The systematic uncertainties are summarized in Ta-
ble 1.

6. Summary

Based on 586 pb−1 of e+e− collision data collected at 
√

s =
4.6 GeV with the BESIII detector and the BEPCII collider, the abso-
lute BF for �+

c → pK 0
S η is determined for the first time. The BF is 

measured to be B(�+
c → pK 0

S η) = (0.414 ±0.084 ±0.028)%, where 
the first uncertainty is statistical and the second one is system-
atic. The statistical significance of this measurement is larger than 
7σ , and the significance becomes 5.3σ when both statistical and 
systematic uncertainties are taken into account. This result is com-
patible with the CLEO result B(�+

c → pK 0
S η) = (0.8 ± 0.2)% [12]

within 1.5σ . Our result is consistent with theoretical predictions 
based on SU(3) symmetry [11,14]. With present statistics, it is not 
practical to measure any intermediate N∗ states, as suggested in 
Refs. [15,16].
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