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Abstract In [4], a new family W (LP®, L)) of Wiener amalgam spaces was defined and
investigated some properties of these spaces, where local component is a variable exponent
Lebesgue space LP(®) (R) and the global component is a weighted Lebesgue space L, (R).
This present paper is a sequel to our work [4]. In Section 2, we discuss necessary and sufficient
conditions for the equality W <LP (@) L%) = L?(R). Later we give some characterization of

Wiener amalgam space W (Lp(“‘")7L?n> . In Section 3 we define the Wiener amalgam space

w <.7-'Lp<“"”), L?,L) and investigate some properties of this space, where FLP® is the image
of L@ under the Fourier transform. In Section 4, we discuss boundedness of the Hardy-
Littlewood maximal operator between some Wiener amalgam spaces.
Key words weighted Lebesgue space; variable exponent Lebesgue
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1 Introduction

Function spaces with variable exponents have been intensively studied in recent years by a
significant number of authors. The variable exponent Lebesgue spaces (or generalized Lebesgue
spaces) LP(*) appeared in literature for the first time already in a 1931 article by Orlicz [28],
but the modern development started with the paper [27] of Kovacik and Rakosnik in 1991. A
survey of the history of the field with a bibliography of more than a hundred titles published
up to 2004 can be found in [10]; further surveys are due to Samko [33] and Kokilashvili [26].
The boundedness of the maximal operator was an open problem in LP(*) for a long time. It
was first proved by L. Diening over bounded domains in 2004 [9]. After this paper, many

interesting and important papers appeared in non-weighted and weighted variable exponent
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spaces. The area which is now called variable exponent analysis, last decade became a rather
branched field with many interesting results obtained in Harmonic Analysis, Approximation
Theory, Operator Theory (maximal, singular operators and potential type operators), Pseudo-
Differential Operators.

The interest on Lebesgue spaces with variable exponent comes not only from their own the-
oretical curiosity but also from their importance in some applications, the motivation to study
such function spaces comes from applications to fluid dynamics ([1], [31]), image processing [6],
PDE and the calculus of variation ([2],[13]).

2 Notations

Throughout this paper we denote by C. (R),C5° (R), Cy (R) and S (R) the space of complex-
valued continuous function on R with compact support, the space of complex-valued continuous
functions on R which are continuously differentiable many times and have compact support,
the space of complex-valued continuous function on R vanish at infinity and the Schwartz
space on R respectively. We also denote by S’ (R) its topological dual. For any measur-
able function f : R — C, the translation and modulation operators T, and M,, are given by
T.f(t)=f(t—xz)and My, f (t) =™ f (t). A weight function m on R is a non-negative, con-
tinuous and locally integrable function. m is called submultiplicative if m (x + y) < m (z) m (y)
for all z,y € R. Let v be a submultiplicative function on R. A weight function m on R is
v—moderate if m (x +y) < Cv (x)m (y) for all z,y € R. Let m; and mg be two weights. We
say that mg =< my if there exists C' > 0 such that mgy(z) < Cmy (z) for all z € R. Two
weight functions mj and ms are called equivalent and we write m; ~ mo, if mo < my and
my =< mae,[18],[30]. It is easy to see that equivalent weights (also moderate functions) define

the same weighted spaces, given by
Ly, (R) ={f: fme L%}

with the natural norm

1
11, = Vol = { [ 1r@m ez}, 120 <oc
or
[fllpee = [lfmll e = ess Sup [f(@)[m(z), q=o0.
It is known that (LZ,(R), ||HL%) is a Banach space and the dual of the space L%, (R) is the
space L? _;(R), where 1 < ¢ < oo, %—l—% = 1. It is well known that if m is submultiplicative and

m (z) > 1 for all z € R", then (L}n R) -1l ) is a Banach algebra with respect to convolution.
It is called Beurling algebra [17], [19], [30] and [34].
Let f € L' (R). The Fourier transform f (or Ff ) of fis given by

Fy= [ @)

for z,t € R.

Let p: R — [1,00) be a measurable function (called the variable exponent on R). We put

px = ess infp(x), p* = ess supp(x).
x€R z€R
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The variable exponent Lebesgue spaces (or generalized Lebesgue space) LP(*)(R) is defined to

be the space of all measurable functions (equivalent classes) f on R such that

Qp(f) = /R |/\f(117)|p(x) dr < o

for some A = A (f) > 0. The function g,(f) called modular of the space LP(*)(R). Then

I lapes = n 2> 02 0,05 <1}, (2.1)
is a norm (Luxemburg norm) on LP(*)(R). This makes LP(*)(R) a Banach space. If p(z) = p is
a constant function, then the norm ||.||; ) coincides with the usual Lebesgue norm ||.||;, (see
[11], [12], [21], [22], [27]). Tt is also known that if p* < oo then LP(®)(R) is solid space, that
is, if any measurable function g, for which there exists f € LP(®)(R) such that |g (z)| < |f ()]
locally almost everywhere, belongs to LP(®)(R), with [|g||; @) < [|f]l 1w see [3], [5].

A Banach function space (shortly BF-space) on R is a Banach space (B, ||.|| 5) of measurable
L. (R), that is for every compact subset K C R
there exist some constant Cx > 0 such that ||fx x|, < Ck ||f|/z for all f € B.

We say that a Banach space X is continuously embedded into a Banach space Y, X — Y,
if X C Y and there exists a constant C' > 0 such that ||z||y < |[|z]|y for all z € X

Let Bi, B2, Bs be Banach spaces of functions defined on R. The triple (B;, Ba, B3) will be

called a Banach convolution triple (BCT), if convolution, given by

fr fa () = / fir(@ =) fo (£) dt (2.2)

for f; € C.(R)N B; (i =1,2) extends to a bounded, bilinear map from By x By into Bs. It
is clear that (A, A, A) is (BCT) for some A C L' (R) if and only if A is a Banach convolution
algebra.

functions which is continously embedded into L

Research on Wiener amalgam space was initiated by Wiener in [35]. A number of authors
worked on amalgam spaces or some special cases of these spaces. But the first systematic
study of these spaces was undertaken by Holland [24], [25] and by Fournier, Stewart [20]. The
amalgam of L? and /7 on the real line is the space W (L?,19) (R) consisting of functions f which
are locally in LP and have [? behavior at infinity in the sense that the norms over [n,n + 1]
form an [%-sequence. For 1 < p,q < oo the norm

1
0o n+1 HK

£l = [ > [ rera ] <o (2.3
makes W (LP,19) into a Banach space. If p = ¢ then W (LP,[?) reduces to LP. A comprehensive
general theory of amalgam space W (B, C) on a locally compact group was introduced and
studied by Feichtinger in [14-16]. Here B and C are Banach spaces satisfying certain conditions.
Fournier and Stewart gave a good historical background of amalgams, see [20].

Throughout this work we will assume that p* < oo.

3 Some Properties of the Space W(Lp(“’), L‘}n)

Let p: R — [1,00) be a measurable function, 1 < ¢ < oo and let m be a weight function R.
The variable exponent Wiener amalgam space W (LP(I), L;In) firstly defined and investigated
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some properties in [4]. This section of this work is a sequel to the paper [4]. In this section we

will discuss some more properties of W (LP(””), Lfn).

Definition 3.1 The space Lfo(f) (R) consists of all (classes of ) measurable functions f on
R such that fyx € LP(®) (R) for every compact subset K C R, where xx is the characteristic
function of K. Let fix an open set ) C R with compact closure. The Wiener amalgam space
W (LP(®) L)) consists of all elements f € L) (R) such that Fy(z) = Il f X2+l pp belongs

loc
to L2, (R); the norm of W (LP(I)7 LY) is

”f”w([‘p(m),[‘?n) = HFf”L;?n :

It is known that the definition of W (LP(I), L‘}n) is independent of choice of @, i.e., different
choices of @) define the same space with equivalent norms. Also it is a Banach space with this
norm (see Theorem 2.1 in [4]).

Proposition 3.2 Let p(z) and r (x) be variable exponents on R. Then W (Lp(””), L‘}n) c
W (L@, L2) if and only if r (z) < p(z), z € R.

Proof It is known by Proposition 2.5 in [4] that if r (z) < p(z) then W (LP(*) L2) C
W (L@, L4,). Conversely assume that W (LP®), L9)) C W (L"®) L2). If r (z) ;ﬁ p(z) then
r(z) >p(x)orr(zx) ¥ px), r(x) £ p(x). If r(z) > p(r) then by Proposition 2.5 in [4] we
write W (LT(I),L‘}n) cw (Lp(x),L‘}n), a contradiction. If r(z) % p(z), r(x) £ p(z), then
again by Proposition 2.5 in [4] we have W (LP(®), Lg ) € W (L"®) L2), a contradiction. This
completes the proof.

The proof of the following corollary is easy by Proposition 3.2. O

Corollary 3.3 Let p(x) and r (z) be variable exponents on R. Then
W (LP@), Lfn) —W (LT(””), L;In)
if and only if r (z) = p(x).

Proposition 3.4 Let p(z) be variable exponents on R and 1 < g < co. Then W(Lp(x),
L%) = LY(R) if and only if p () = ¢ and m ~ C, where C is a constant.

Proof Assume that W (LP(*), Li,) = L7(R). It is easy to see that L%, (R) = L (R) if
and only if m ~ C, where C' is a constant. It is also known by Proposition 11.5.2 in [23] that
W (L9, L1) = L4 (R). Hence W (L4, L% ) = L7 (R) if and only m ~ C. Finally by assumption
and Corollary 1,

W (LP@), L;In) = L9(R) = W (L%, LY).
if and only if p () = ¢ and m =~ C. O

Definition 3.5 A family of functions {¢;},.; on R is called a bounded uniform partition

of unity, or BUPU, if

a) Y. =1,
i€l
b) sup [ L < 00,
c¢) there exists a compact set U C R with nonemty interior and points y; € R such that
suppy; C U + y; for all ¢ and
d) for each compact subset K C R,

sup#{icl: v e K+y}=sup#{jel: K+y,NK+y,} <oc.
zER i€l
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The proof of the following theorem is same as the proof of Theorem 11.6.2 in [23].
Theorem 3.6 Let m be a moderate weight. If {¢;},.; is a BUPU and V is a compact

set containing U, then

Z I fbill Loy Xvty,

iel

Hf”w(Lp(w),ng) ~

L,

Proposition 3.7 Let m be a moderate weight. Set U = [0,1). Then

q

||f||W(Lp(m)7Lq ~ <Z ||fXU+n ”Lp() m (Zn)q>

nez

)

= [ xvn Ollo buezlliy = 1m0 Ol oo bl .

where w is the weight function on the indexed set Z defined by w (n) =m (z,), 2, € V + n.

Proof Since {U +n}, ., is a partition of R, it is easy to show that {Xxvyn},cz is a
BUPU. If we set V' = [0, 1] then by Theorem 3.6 we have

1w (o) La,)

Z [ Xu4n Ol o) Xv4n (2)

neZ
Z I fxv+n (-)H%p(-) XV (2)

(/2

(Z'fXU-i-n HLPU/RXVJm (w)m(:v)qd:v>

nez

<Z|fXU+n HLP()/ m(a:)qda:> .

neZ Vin

L3,

4q q

m (z)? da:)

Since m (z)? is moderate , by Proposition 11.2.4 in [23] the values

/M m (z)? dz

are uniformly equivalent to the values of m? at any point z, € V + n. That means there exist
constants C7 (V) >0 and Cs (V) > 0 such that

Cr (V)mi(z,) < / m (z)?dx < Cy (V)mi (2,)

V+4n

for any z,, € V 4+ n. Thus

Q=

”fHW(LP(m),L;’n) ~ <Z ”fXUJrn”%p(z) m(zn)q> = ||{HfXU+n||Lp(z) }nEZHlﬁ,

ne”z

= H{fo[nanrl)HLp(I)}nEZ‘ L4

)

where w is the weight function on the indexed set Z defined by w (n) = m (zy,) . O
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4 The Space W(J:Lp(w), Lf’n)

Let FLP() (R) be the image of LP(*) (R) under the Fourier transform F. In this section
firstly we will investigate some properties of FLP(*) (R). Later by using this space we will define
and discuss some properties of the Wiener amalgam space W (.7: L), L‘jn) .

Proposition 4.1 The space LP(*) (R) is continuously embedded into the space S’ (R) of
tempered distributions.

Proof Assume that —~ + -1 = 1. It is known by Theorem 2.11 in [27] that C5° (R) is

p(x) ' q(=@)
dense in L) (R). Now let f € S (R) be given. There exists M > 1 such that

o) = / 1F @)% de < M f], (4.1)

Since p* < oo, by the inequality (4) the identity mapping I : S (R) — L) (R) is continuous.
Hence S (R) is continuously embedded into L4®). Also since C§° (R) € S (R) and C§° (R) is
dense in L9(®) (R), then the Schwartz space S (R) is dense in L9(®) (R). This implies LP(®) =
(L9@®) < 5" (R). O

Definition 4.2 The space FLP(*) (R) is defined by
FLO @) = {F: f e 1/ )},

where Ff is the Fourier transform of f € LP®) (R) in the sense of tempered distribution. We

endow this space with the norm
171,00 = 171 oo (4.2)

Proposition 4.3 (i) The normed space (FLP® (R), .|| 10 ) is & strongly translation

invariant Banach space.

(ii) The translation operator ¢ — T;f is continuous from R into FLP®) (R) for all f €
FLP@) (R).

Proof (i) Let (ﬁl) be a Cauchy sequence in FLP(*) (R). Then (f,) is a Cauchy sequence
in LP(®) (R). Since LP®) (R) is a Banach space, (f,) converges to a function f € LP(*) (R).
Hence given any € > 0 there exists ng € N such that

o=, e = 10 = Flinr <=

for all n > ng. Also f € FLP(®) (R) . Hence FLP®) (R) is a Banach space.
Now let f € FLP(®) (R) and ¢ € R be given. It is known by Lemma 5 in [3] that LP(*) (R)

is strongly character invariant. Hence

IMefll Loy = [1f Lo - (4.3)

Thus by (4.3)

A
Ty = 1O g = M5l
= 1 flzoer = | f]

Then FLP(®) (R) is strongly translation invariant.

FLp(x) ’
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(ii) Let any feFLr@® (R) be given. Since the space FLP(®) (R) is translation invariant,
for the proof of (ii) it is enough to show that the operator ¢t — this continuous at ¢t = 0. We
know by Lemma 5 in [3] that the function t — M;g is continuous from R into LP(*) (R). Then

’th ﬂ’fL - = Mif = fllpo

tends to zero as ¢ — 0. This completes the proof. O

the right side of the equality

Corollary 4.4 By Proposition 4.3, FLP(*) (R) is a Banach space of homogeneous tem-
pered distributions.

Proposition 4.5 FLP(*) (R) is a Banach convolution module over FL> (R), where
FL> (R) is the image of L* (R) under the Fourier transform F.

Proof It is known by Lemma 1 in [3] that LP(*) (R) is a Banach module over L (R)
with respect to pointwise multiplication.

Now let (F,G) € FL*® (R) x FLP®) (R). Then there exists f € L> (R) and g € LP®) (R)
such that f = F and § = G. Since LP®) (R) is solid, by Lemma 1 in [3] we obtain

IF % Gllzroer = 1£9ll Lo < Nl N9l Lo
= [|Fllzr IGll £ Lo < oo
Let m be a submultiplicative weight function on R. Since W (Co,ﬂjn) is a Banach con-

volution algebra, then the image A = F (W (Co,£L,)) of the space W (Cy, £},) under Fourier

transform is a Banach algebra with respect to pointwise multiplication [14] . O

Proposition 4.6 Let m be a submultiplicative weight function on R. Then A = FW (Cy, (1)
has a bounded uniform partition of unity (BUPU).

Proof Take the characteristic function X[-1.4] and a function g € S(R), g (¢t) > 0 with

compact support such that fj;o g (t)dt = 1. It is easy to show that g x 1 = 1. Define ¢, (t) =

X[~ 1.1] t) = TnX[_%7%] (t),n € Z. Then n%:Zgon (t) = 1. Since g € S (R), then gx ¢, € S (R)
for all n € Z. If we set ¢, = g* @y, the family {¢,,}, ., is a Bounded uniform partition of unity

(BUPU) on R. Indeed

1=(g*1)( :(g*Zgon) <g*zTnX_%%> )

newz neZ

—Z(Q*Tnx,%%])( )= (9% en) (@) =) val(a)

nez neZ neZ

for all z € R. For the boundedness of {1, }, o, in the space A we write

1l = 1F%allw ooy = IF 9% 00l ooy = IFIFCnllw ey - (44)

where F denotes the inverse Fourier transform. Since v, = g * ¢, € S (R) C W (Cy,£*) for all
n € Z, then F (1) = F (9% ¢n) = FgF¢, € S(R) C W (Co,£*) . Also

Fou (2) = F (Tux|_y.3)) @) = MuF (x[_3 4)) (4.5)
where M, is the modulation operator. By (4.4) and (4.5)

11
2°2

[¥nlla = ||F¢n||W(co,e1) = HFQF@HHW(CO,@)
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=[FoMF (x| o = P97 Oz

< F9llw ey, ’F (X[*%V%])

for all n € Z. Hence
sup |||l 4, = C < o0, (4.6)
nez

=(C<

’ oo

which completes the proof. g

Let B = FLP(®) (R). We know by Corollary 4.4 that FLP(®) (R) is a homogeneous Banach
space. By Proposition 4.1, B — S’ (R). Hence A is a homoneous Banach space with respect to

pointwise multiplication with the norm

17, = 171w ceny-

Since W(Co,fl) C L', then A = .7:(W (Co,fl)) C FL' C Cy(R). Define the unite map
I:A— Cy(R). Then we write

1, =1, < e Wi~ 1,
That means A is continuously embedded into (Cy (R), .|| ;) . Also since S (R) € W (Co, ¢*)

then
F(S(R)=SR)CF (W (Co,él)) =A.
Now we are ready to define the Wiener amalgam space W (f L), L;Zn) by [14].
Definition 4.7 Let the family of functions {¢;},.;, on R be a BUPU. Also let p(z) be
variable exponents on R , 1 < g < oo and let m be a weight function R. The Wiener amalgam
space W (]—"Lp(m), Lg,) can be defined as follows: f € W (pr(””), Lg)) if and only if f € 5" (R)
and

”f”w(]:Lp(z),L;’n) = <Z ||f1/)n||qup(z) m (n)q> < 0.

nez
One can easily show as in [14] that these spaces do not depend on the bounded uniform

partition of unity{¢, }.
Proposition 4.8 (i) The space W (pr(””), L;Zn) is translation invariant and

&l <mie 7]
‘ f W (FLr@),L8,) ~ mia)||f W(FLr@) ,L1,)
for all f € W (FLP®), L4).
(ii) The translation operator t — th is continuous from R into W (.7: Lr(®), L;Zn) for all
Few (FLr@) Lg).

Proof (i) Let f & W (FL'®,Lg,). Then F;(x) = |[(t) xq+s (t)Hpr(m) € LY, (R).

Also we have

Fr7 @) = |(7aF) O xesa 0|, = [F O x40 )]
=F;(x—a) =T.F; (2).
Since F; (z) € L, (R) and L, (R) is translation invariant then T, F; (z) = Fy, 7 (2) € LY, (R).

Taf
7 {/R

FLp(x)

We also obtain

Q=

q
Taﬂ’w(pr(z)7Lgn) = HFTaJ? TaFf (x)m(‘r)‘ d:v}
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1
q q
_ {/ z A(u)m(u—l—a)‘ d:z:}
R

(ii) Let few (pr(””), L)) . Since W (}'LP(””), L)) is translation invariant, for the proof

of (ii) it is enough to show that the operator t — T;f is continuous at ¢ = 0. One can write

= F A—/\‘
W (FLr(),LE,) H Taf !

( ) ”fHW(fLP(I),L?U) .

fL()

4.
Lo (4.7)

and

\~>
H

’ (Mo f - f () XQ+« (t)Hpr(z)
’ M f f ||]:Lp(z) - ”Maf - fHLp(I) .

By Lemma 5 in [3] , the map a — M, f is continuous from R into LP(*) (R). Also we have

IN

H(Tf f) XQ+e )Hpr<z)
|
|

Fr 55 (@) < IMafll Lo + 1 fll Lo = 2 fllzoe < 00

Hence by Lebesgue dominated theorem the right hand side of (4.7) tends to zero as a — 0. This
completes the proof. O
Proposition 4.9 (i) (W (FLP®) Lg), W (FL>,L.,),W (FLP®) L3))) is a Banach
convolution triples (BCT).
(i) Let iy + 7oy = wgey < 1 Then

(w (7L, 1a ), w (FL@, 1L ) W (FLH, L))

is a BCT.

Proof (i) Since FLP(®) is a Banach module over FL> with respect to convolution Propo-
sition 4.5, then (pr(I),]:LOO,]:L”(I)) is a Banach convolution triple. Also it is known that
(L4,,LL, L3)) is a Banach convolution triple. Hence by Theorem 3 in [14], (W (FLP(®), L3 ),
W(FL>,LL), W(FLP®) L3 )) is a Banach convolution triple.

(ii) Let (F,G) € }‘LP @) (R)x FL™®) (R) . Then there exists f € LP(*) (R) and g € L") (R)
such that f = F and g = (. By Lemma 1.18 in [32], there exists a C' > 0 such that

HF* GHka(m) = ||f9HLk<m> < CHf”LP(m) Hg”LT(w)
= CHF”]:Lp(z) HGH]:Lr(z) <0

and FLP@ (R) » FL"@) (R) C FL*® (R). Hence (FLP® FL"@ FL¥®) is a BCT. Since
(L‘}n, L. L;Zn) is a BCT, then again by Theorem 3 in [14] the proof is complete. 0

5 Boundedness of Hardy Littlewood Maximal Operator on
W (L, L)

Let 2 C R be an open subset and let P () be the set of measurable functions p : @ — [1, 00)
such that 1 < p. < p(z) < p* < 0o. For f € L. (Q), we define the (centered) Hardy-Littlewood
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maximal function M f of f by

Mﬂ@z&mri——/, FW)ldy, Ba.r) = Ble,r) e, (5.1)
r>0 ‘B(JJ, 7.)‘ B(z,r)

where the supremum is taken over all balls B (x,r) and |£N3(:v, )| denotes the volume of fN?(:C, T).
It is known that the Hardy-Littlewood maximal function is not bounded in LP(*) (Q) in

general [29].
We will often need to assume that p (z) satisfies the following two log-Holder continuity
conditions: o )
— < — Q -yl < =. 5.2
p(x) p(y)I__ln|I_y|,:v7y€ sz =yl <5 (5.2)
and o
- < Q . 5.3
@) =P W) < ey ™ V€D vl >l (53)
We use the notation
P(Q):= {p € P(Q) : M is bounded on LP*) (Q)} . (5.4)

It is known that if  is open and bounded and (5.3) holds then the Hardy-Littlewood maximal
operator is bounded on LP(®) (Q), [9]. Tt is also known that If © is open and both (5.3) and
(5.4) hold then again the Hardy-Littlewood maximal operator is bounded on LP(*) (Q) (see
(7], 8], [11], [22]). Although the Hardy-Littlewood maximal function is a bounded on LP(®)
under some conditions, it is not bounded on many of the Wiener amalgam spaces. We know
the following result.

Proposition 5.1 (Aydin, Giirkanl, [4]) Let p: R — [1,00), 1 < ¢ < 00 and w is a weight
function. If 1 € L* (R) and % + 1 =1, then the Hardy-Littlewood maximal function M is not
bounded on W (LP*) (R), L4, (R)) .

Now we will show that the Hardy-Littlewood maximal operator is bounded on
W (L@ (R), L, (R)) under some conditions.

Theorem 5.2 Letr(z) < ¢ <p(z)and %—i—% =1.1f L ¢ L9 and the Hardy- Littlewood

maximal operator
M: LI (R) — LI (R)

is bounded, then the Hardy -Littlewood maximal operator
MW (L”(””), Lfn) W (LT(””), Lgn)
is bounded.
Proof By the continuity of
M : L, (R) — Ly, (R), (5.5)

there exists C7 > 0 such that

1M 5N, <IN, (56)
for all f € L%, (R). Also it is known by Proposition 11.5.2 in [23] that W (L9, L%,) = LY, (R).
Since r () < ¢ < p(z), then by Proposition 2.5 in [4], we have the embeddings

W (LW), Lgn) < W(LY, L) = L (R) — W (LT@), Lgn) . (5.7)
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Hence the unit maps
IW(me),Lgn) W (Lp(m)a Lgn) — L7, (R)
and
Ipg =yt L9, (R) — W (LT(””), L;Jn)
are bounded. Then there exist Cy > 0 and C3 > 0 such that

£, < C2AIfI (5.8)

(Lr@),L4,)
and
Il (2o, < Cs ol (59)
for all f € W (LP®) L) and g € Lg, (R"). Now let f € W (LP(®) L) be given. By the
embeddings (5.7) and the continuity of the Hardy-Littlewood maximal operator M : L (R) —
L2 (R) we have f € L (R) and M f € LZ (R). Hence by (5.6), (5.8) and (5.9) we obtain

1M fllw (e ng) = [ Uzgemy © M) Fllyp (oo 20,y = e M)y (prer 1)
< G M, < CiGIfll, < CiC20s | fllw (Lo is)
=K HfHW(me,Lgn) )
where K = C1CyC5. ]
The following Corollary can be obtained by Theorem 5.2 and Theorem 2.2 in [10].
Corollary 5.3 Let p(z) and ¢ be as in Theorem 5.2 and let 1 < s < co. Then s.p(z) €
P (R) and Hardy-Littlewood maximal operator
MW (L@, 0 ) w (1), 1)
is bounded.

One can easily prove the following theorem by using Proposition 2.5 in [4], Theorem 1.5 in
[8] and the same technic in the proof of Theorem 5.2.

Proposition 5.4 Let p € P (R).
i) If LP®) — W (L@ La)), r(z) <ri(2), ¢ > q > 1and = ¢ LY, then the Hardy-

Littlewood maximal operator

M : LP@) (R) — W (Lr(m)7 Lfn)

operator
MW (L), L) — L7 (R)

is bounded.
The following Corollary is proved easily by Proposition 5.4.
Corollary 5.5 Let the exponents be as in Proposition 5.4. If LP(*) — W (L”(””), L%)
and W (L”(z), ng) «— LP(*) then the Hardy-Littlewood maximal operator
MW (L@, 1) - w (L@, 11,

is bounded.
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Example 5.6 Let m be a weight function satisfying L ¢ L? (R). Assume that p,r: R —

[1,00) are functions defining by

2, forx <0 1, forz <0
pix)=4q4, for0<z<1p, 7(@)=492 for0<z =<1
2, forx >1 1, forz >1

Since r(x) < 2 < p(x) then by Theorem 5.2, the Hardy-Littlewood maximal operator

MW (17,18} — w (L), 1g,)

is bounded.
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