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Abstract

The paper deals with the Arens Multiplication which we accomplished in four steps in the
order bidual X ~~. It is shown that if f is an element of order dual X~ of X with &(f)=0

and xe X", then f.x=0 implies f(x)=0.
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Introduction

A Riesz space E under an associative multiplication is said to be a Riesz
algebra whenever the multiplication makes E an algebra ( with the usual properties ), and in

addition it satisfies the following property : If x,ye E* , then xye E*. A Riesz algebra E is
said to be an f —algebra whenever x A y=0 implies (xz)Ay=0 foreach ze E*. An

order bounded band preserving operator is known as an orthomorphism and the set of all
orthomorphism on X is denoted by Orth(X), [2] .
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A subset A of Riesz space is said to be bounded from above whenever there
exists some x satisfying y <x forall ye A. Similarly, a set A is said to be bounded from

below whenever there exists some x such that x <y holds for all ye A. Finally, a set A is
called order bounded if it is bounded both from above and below . An operator T : E — F

that maps order bounded subsets of E onto order bounded subsets of F is called order
bounded. An operator T : E — E on a Riesz space is said to be band preserving whenever

T leaves all bands of E invariant, i.e., whenever 7 (B) < B holds for each band B of E.
Let E be a Riesz space. A linear functional f : E — R is called order bounded
if f maps order bounded subsets of £ onto bounded subsets of R , [4]. The vector space

E~of all order bounded linear functionals on Eis called the order dual of E , i.e.,
E" =L, (E,R). Let X be an Archimedean f — algebra with order dual X ~. Following

construction [3,5,6,7] a multiplication can be introduced in the order bidual X ™~ of X .
This is accomplished in four steps as explained below.

1) Orth(X)xX - X
(T,x) >Tx=T(x) for TeOrth(X), xe X.
2) XXX~ - O0rth(X)~
(x,x) = (xx"T = x'(Tx) for x'e X", xe X, Te Orth(X).
3)Orth(X)” " xX~ — X~
(T,x) = (TxX)x=T(xx) for Te Orth(X) ™ ,x'e X~, xe X.
4) Orth(X)"”" XX~ > X"~

(T,%) = (T =XTx") for Te Orth(X)™™, x'e X™".

Proposition 1 :Let «@:0rth(X)™ — Orth(X") be a mapping defined by

a(T)x'=Tx" forTe Orth(X)"~, x'e X~. Then a is a one-one , onto and algebra
homomorphism.

Proof : We will prove the following, respectively.
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i) @ is a linear mapping.
ii) & is an one-one mapping.

iii) @ is an algebra homomorphism.

i) a:0rth(X)”™ > Orth(X ™) , a)x'=Tx" , for TeOrth(X)™, x'e X".

a(T)x' =T.x
a is a linear mapping :

a) aT+S)=a(l)+a(S) we must show that a(T + S)x" = a(T)x" + a(S)x’
forall xe X.

[T+ )X x=[(T+8).x]x =T+ $)(xx) From third product we have

TxYx=T(xx") and

(T+8)(xx)=T(xx)+S(xx")
=(T.x)x+(Sx)x
=[a(T)x'|x + [a(S)x'] .

b) a(AT)=Aa(T)  we must show that &(AT)x" = Aa(T)x" 1is true for all xe X .

(AT X )x=[AT)x]x , xXeX~
= AT (x.x")
= AUT.x")x

:ﬂ[a(T).x'lx. So,a is a linear mapping.

ii) @ isone-one [ie. T#0= a(T)#0.)]
0T € Orth(X)™ " there is a 4 ye€ Orth(X)~
Let us take as 'y = x.x"€ Orth(X)~

Ty #0
T(xx)#0
Tx)x=0

[e(T)x']x 0= a(T) % 0.
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ili) @ is an algebra homomorphism, to prove this claim,

a(T.S)=al))a(S) for all xe X.

@S x|x=T:8)xx) , xx'€Orth(X)
=T (S(x.x"))
=T(a(S)x")x
=T(Sx").x , SxeX-
=[rs.x)]x
=a(T)a(S).

Lemma 2[1,5] : Let xe X, fe X~.
If the mapping f.x:Orth(X) — R is defined by (f.x)(x)=(fox).x , for xeOrth(X)
then f.xe OrthX".

Proof : Consider the mapping (2)

XXX — OrthX~

x,f)—>xof xofeOrthX™ , xofeOrth(X)—> R Then, we obtain
(x.f)() = (f o 7).x.

Let fB:0rth(X) — L,(X) be amapping defined by

T — B(T)x=Tx.

Next, we obtain the following equalities:

HT)=Tx)(f) . feX
=B(T)x
(x.f)(7) = (me)(f)
= (B(m)x).f
= f(B(7)x)
= f (). So,
(x.f)(m)= f(mx) and xfe OrthX".

Lemma 3 : Suppose the mapping ¢: X =~ — Orth(X)™"~ is defined by



A note on the order bidual of f-algebras 27

OF)f)=F(f)) ,for Fe X, fe Orth(X)™ and the mapping

a:0Orth(X)"™ - Orth(X™) then

B=a-¢ is algebra homomorphism.

¢
= Orth(X)"
X d a
N Orth(X")
B=ao-¢

Proof :We must show
B(F.G) = B(F).B(G) for F,Ge X"
B(F.G) = (ao )(F.G)
=a(d(F.G)) weknow ¢is hom omorphism[l]

=a(¢(F)9(G))

=a(@(F).a(@(G)) (X7 is f —module over Orth(X)™ ")
=(ao ) (F)(a°9)G)

= p(F)B(G).

Forevery fe (X )" , defined &(f) to be the set of all extensions of f in (Orth(X )")+ ,
[1]. Thatis, e(f)={ge Orh(X)" : 0<gand g =1}

Proposition 4 : Let f be an element of order dual X~ of X with &(f)#0. If xe X,
then f.x=0 implies f(x)=0 ,[1].

Proof : Let us consider the set ,

e(f)={gc Orh(X)" : 0< gand g =f} for feX , xeX.

Let 0= f.xe Orth(X")
0T)=fTx)y , VTeOrth(X)
0= f(Tx)

If we take T =1
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fIx)=0 = f(x)=0.
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