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Abstract 

 
The paper deals with the Arens Multiplication which we accomplished in four steps in the 

order bidual ~ ~X . It is shown that if f is an element of order dual ~X   of X  with 0)( ≠fε  

and ,+∈ Xx   then 0. =xf  implies .0)( =xf  
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Introduction 
 
                        A Riesz space E  under an associative multiplication is said to be a Riesz  
algebra whenever the multiplication makes E  an algebra ( with the usual properties ), and in 

addition it satisfies the following property : If ++ ∈∈ ExythenEyx ,, . A Riesz algebra E  is 

said to be an ebraaf lg−  whenever 0=∧ yx   implies 0)( =∧ yxz   for each +∈ Ez . An 
order bounded band preserving operator is known as an orthomorphism and the set of all 
orthomorphism on X  is denoted by )(XOrth , [2] . 
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                        A subset A  of  Riesz space is said to be bounded from above whenever there 
exists some x   satisfying  xy ≤   for all .Ay∈  Similarly, a set A  is said to be bounded from 

below whenever there exists some x  such that yx ≤   holds for all .Ay ∈  Finally, a set A  is 

called  order bounded if it is bounded both from above and below . An operator FET →:  
that  maps order bounded subsets of E  onto order bounded subsets of F  is called order 
bounded.  An operator EET →:  on a Riesz space is said to be band preserving whenever  

T  leaves all bands of E  invariant , i.e., whenever  BBT ⊆)(  holds for each band B of E .  

                        Let E be a Riesz space. A linear functional REf →:  is called order bounded 

if f  maps order bounded subsets of E  onto bounded subsets of R  , [4]. The vector space 
~E of all order bounded linear functionals on E is called the order dual of E  , i.e., 

),(:~
RELE b= . Let X  be an Archimedean −f  algebra with order dual ~X . Following 

construction [ ]7,6,5,3  a multiplication can be introduced in the order bidual ~ ~X  of X . 
 This is accomplished in four steps as explained below. 
 
 
 
1)   XXXOrth →×)(  
 
        forxTxTxT )(.),( =→     XxXOrthT ∈∈ ),( . 
  

2)  ~~ )(XOrthXX →×  
 

      forTxxTxxxx )().(),( ′=′→′      ).(,,~ XOrthTXxXx ∈∈∈′  
 

3) ~~~ ~)( XXXOrth →×  
 

      .,,)().().(),( ~~ ~ XxXxXOrthTforxxTxxTxT ∈∈′∈′=′→′  
 

4) ~ ~~ ~~ ~)( XXXOrth →×  
 

     .,)().(ˆ))(ˆ.()ˆ,( ~ ~~ ~ XxXOrthTforxTxxxTxT ∈′∈′=′→  

 
 
 

Proposition 1 :Let )()(: ~~ ~ XOrthXOrth →α   be a mapping defined by 

.,)()( ~~ ~ XxXOrthTforxTxT ∈′∈′=′α   Then α   is a one-one , onto and algebra 
homomorphism. 
 
 
Proof : We will prove the following, respectively. 
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i) α   is a linear mapping. 
 
ii) α   is an one-one mapping. 
 
iii) α  is an algebra homomorphism. 
 
 

i) .,)(,.)(,)()(: ~~ ~~~ ~ XxXOrthTforxTxTXOrthXOrth ∈′∈′=′→ αα  

 
     xTxT ′=′ .)(α  
 
α  is a linear mapping : 
 
a) )()()( STST ααα +=+    we must show that xSxTxST ′+′=′+ )()()( ααα    is  true 

.Xxallfor ∈  

 
 
[ ] [ ] ).)((.).(.)( xxSTxxSTxxST ′+=′+=′+α From third product we have  
 

[ ] [ ] ..)(.)(

).().(

).().().)((

).().(

xxSxxT

xxSxxT

xxSxxTxxST

andxxTxxT

′+′=

′+′=

′+′=′+

′=′

αα

 

 
b) )()( TT λαλα =       we must show that xTxT ′=′ )()( λαλα   is true for all Xx ∈ . 
 

[ ]( ) [ ]

[ ] .,..).(

)..(

).(

,.).(.).( ~

mappinglinearaisSoxxT

xxT

xxT

XxxxTxxT

ααλ

λ

λ

λλα

′=

′=

′=

∈′′=′

 

 
 
ii) α  is one-one   [ ].0)(0.. ≠⇒≠ TTei α  

[ ] .0)(0)(

0)..(

0).(

0

)(.

)()(0
~

~~ ~

≠⇒≠′

=′

≠′

≠

∈′=

∈∃∈≠

TxxT

xxT

xxT

Ty

XOrthxxyastakeusLet

XOrthyaisthereXOrthT

αα
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iii) α   is an algebra homomorphism, to prove this claim, 
 

[ ]
( )
( )

[ ]
).()(

.).(

.,)..(

.)(

).(

)(.,).)(:(.)..(

.)()().(

~

~

ST

xxST

XxSxxST

xxST

xxST

XOrthxxxxSTxxST

XxallforSTST

αα

α

α

ααα

=

′=

∈′′=

′=

′=

∈′′=′

∈=

 

 
 

Lemma 2[1,5] : Let ., ~
XfXx ∈∈                                                                                                         

If  the mapping )(,).())(.()(:. XOrthforxfxfbydefinedisRXOrthxf ∈=→ πππ o  

then .. ~
OrthXxf ∈  

 
Proof :  Consider the mapping  (2)  
 

     

.)(

)()(:

.).())(.(

,)(,,),( ~

~~

TxxTT

bydefinedmappingabeXLXOrthLet

xffx

obtainweThenRXOrthfxOrthXfxfxfx

OrthXXX

b

=→

→

=

→∈∈→

→×

β

β

ππ o

ooo

 

 
    Next, we obtain the following equalities: 
 

( )

.)())(.(

,).(

))((

.)(

))(())(.(

)(

,))(())((

~

~

OrthXxfandxffx

Soxf

xf

fx

fxfx

xT

XffTxTxf

∈=

=

=

=

=

=

∈=
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πβ

ππ

β

 

 
 

Lemma 3 : Suppose the mapping ~ ~~ ~ )(: XOrthX →φ   is defined by  
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.homlg

)()(:

)(,,)())((
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~

omorphismebraais
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φαβ
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Proof :We must show 

[ ]

).()(
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))(mod())(().((

))().((

1hom)).((

).)(().(

,)().().(
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GF
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For every +∈ )( ~
Xf   ,  defined )( fε to be the set of all extensions of f  in ( )+~)(XOrth  , 

[1]. That is ,  { }.0:)()( ~
fgandgXOrthgf x =≤∈=ε  

 
 

Proposition 4 : Let f be an element of order dual ~
X   of X  with  .0)( ≠fε  If ,+∈ Xx   

then 0. =xf  implies 0)( =xf , [1]. 
 
Proof : Let us consider the set , 
 

{ }.0:)()( ~
fgandgXOrthgf x =≤∈=ε    for XxXf ∈∈ ,~ . 

 

Let     )(.0 ~
XOrthxf ∈=  

          )(,).()(0 XOrthTxTfT ∈∀=  

          )(0 Txf=  

 
If we take IT =  

φαβ

α

φ

o=

→

↓

→

)Orth(X

)(

~

~ ~

~ ~

X

XOrth
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.0)(0)( =⇒= xfIxf  
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