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ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which 
emerged in 2019, cut the epoch that will make profound fluctuates in the history of the world 
in social, economic, and scientific fields. Urgent needs in public health have brought with 
them innovative approaches, including diagnosis, prevention, and treatment. To exceed the 
coronavirus disease 2019 (COVID-19) pandemic, various scientific authorities in the world 
have procreated advances in real time polymerase chain reaction (RT-PCR) based diagnostic 
tests, rapid diagnostic kits, the development of vaccines for immunization, and the purposing 
pharmaceuticals for treatment. Diagnosis, treatment, and immunization approaches put for-
ward by scientific communities are cross-fed from the accrued knowledge of multidisciplinary 
sciences in health biotechnology. So much so that the pandemic, urgently prioritized in the 
world, is not only viral infections but also has been the pulsion in the development of novel 
approaches in many fields such as diagnosis, treatment, translational medicine, virology, mi-
crobiology, immunology, functional nano- and bio-materials, bioinformatics, molecular biol-
ogy, genetics, tissue engineering, biomedical devices, and artificial intelligence technologies. 
In this review, the effects of the COVID-19 pandemic on the development of various scientific 
areas of health biotechnology are discussed.

Cite this article as: Ari Yuka S, Aslan A, Üstündağ CB, et al.; SABIOTEK Collaboration. Re-
cent advances in health biotechnology during pandemic. Sigma J Eng Nat Sci 2023;41(3):625−655.
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INTRODUCTION 

SARS-CoV-2 infection, which first appeared in Wuhan, 
China in December 2019 spread all over the world in a 
short time and became the most critical public health issue. 
Protection, immunization, and treatment against SARS-
CoV-2, which has identified five variants circulating so far, 

have changed the social and economic statements all over 
the world. Of the 630 million cases caused by these circulat-
ing variants, which have varying characteristics in terms of 
contagion, disease severity, risk of re-infection, diagnosis, 
and vaccine performance, more than 6 million died [1].

SARS-CoV-2 is typically characterized by symptoms 
such as fever, cough, sore throat, muscle pain, anosmia, 
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and headache [2,3]. The entry of the viral pathogen into 
human cells begins with the interaction of the receptor 
binding region in the S1 subunit of the Spike (S) protein 
and the human angiotensin-converting enzyme 2 (ACE2) 
protein and occurs when the S2 region mediates the mem-
brane fusion [4,5]. Although ACE2-mediated SARS-CoV 
cell entry has been described much earlier, the exploring 
of rapid transmission of SARS-CoV-2 and the causes of 
its aggressive systemic effects were the first approaches of 
the pandemic [6,7]. When the genome similarities with 
other viral pathogens were examined in the first studies to 
elucidate the characteristic features of the infection at the 
molecular level, it was found that it shows 79% sequence 
similarity with SARS-CoV [8]. 

The entry of the SARS-CoV-2 into the cell, the escape 
from the immune system mechanisms, and the regulation 
of the human immune system have been explained, by 
analyzing the structural and non-structural proteins of the 
virus [9–11]. The pathogenic characterization of the virus 
has strengthened the basic knowledge for diagnosis, immu-
nization, and treatment processes. The first need to prevent 
the spread of viral infection was methods to ensure its rapid 
identification and diagnostics. Many protocols that allow 
diagnosis by RT-PCR have been defined and the pathogenic 
virus profile has been evaluated during infection periods 
[12,13]. However, although it has low sensitivity compared 
to RT-PCR methods, easy-to-use, inexpensive, and rapid 
antigen tests have also been developed to prevent the spread 
of COVID-19 [14].

Parallel to these, vaccine and therapeutic develop-
ment studies have started to combat the pandemic. Initial 
approaches have been made to propose vaccines and anti-vi-
ral agents, thanks to the identification of SARS-CoV-2 and 
human ACE2 receptor interactions [15]. Initial reports 
focused on the development of new therapeutics, or the 
re-proposing of existing therapeutics that inhibit the binding 
or fusion of the viral pathogen in other CoVs, by interact-
ing with specific sites in the proteins [16,17]. Various types 
of vaccines have been developed by scientific committees 
for immunization against SARS-CoV-2 [18,19]. All these 
efforts provide synergy in the combat against SARS-CoV-2 
and played a major role during the pandemic. 

During COVID-19, many other disciplines have also 
contributed to therapeutic, diagnostic, or immunization 
approaches in addition to molecular, genetic, and immu-
nity of SARS-CoV-2 (Figure 1). For instance, it has been 
contributed greatly to the acceleration of the approaches 
of predicting treatment output or developing therapeu-
tic agents when the data obtained from basic sciences are 
integrated with artificial intelligence technologies [20,21]. 
Additionally, as well as the use of materials science in 
SARS-CoV-2 biosensor applications and diagnostic tests, 
increasing vaccine efficacy with functional biomaterials 
for vaccine release, and reducing virus transmission of spe-
cial nanomaterials have been suggested [22,23]. Even, tis-
sue engineering approaches have been proposed for use in 

analyzing the pathogenic properties of the viral agent [24]. 
At the same time, the contribution of material sciences can-
not be ignored in the production of easy-to-use/produce, 
safe and low-cost equipment that can be used in diagno-
sis and treatment [25]. During COVID-19, many scientists 
from different disciplines of health biotechnology contrib-
uted to overcoming this challenging pandemic. 

CHARACTERISTICS AND PATHOLOGY OF SARS-
COV-2

Coronaviruses contain four structural proteins includ-
ing Membrane (M), Envelope (E), Nucleocapsid (N), and 
Spike (S). S glycoprotein, which consists of transmembrane 
trimethric glycoproteins, is the protein that determines 
virus diversity and host tropism. A series of protease cleav-
age processes are initiated in the viral S protein that binds 
to the host protein ACE2 via Receptor Binding Domain 
(RBD) in the S1 subunit [4,5]. Following cleavage at the 
S1/S2 cleavage site, the S1 and S2 subunits are bounded 
via non-covalent bonds, with the S1 subunit stabilizing 
S2 in its pre-membrane fusion state. With the cleavage of 
the S2 subunit, membrane fusion is initiated through con-
formational changes and entry of virus into is completed 
[26]. In the first studies, RaTG13 (96.2% sequence identity) 
found in Rhinolophus bat was associated with coronavirus 
origin. However, genomic similarity maps on the RBD in 
the S1 subunit of the S protein, the key player of the infec-
tion, pointed to other possibilities such as PCoV-GD origin 
[4,27]. In the initial phase of the pandemic, genetic analyses 
of the ACE2 receptor in different populations showed that 

Figure 1. COVID-19 and disciplines in health 
biotechnology.
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the population had different suspectibility profiles depend-
ing on the genetics of the population [28]. In addition, in 
studies on the molecular mechanisms of the severity of 
symptoms, especially ACE2 expression profile and systemic 
effects of infection have been associated [29]. 

Cytokine release begins with the contribution of macro-
phages and monocytes and immune responses in the host 
are eventuated, following the infection. SARS-CoV-2 has 
been reported to exhibit a cytokine storm-related severity 
profile mediated by inflammatory mediators such as IL-1β, 
IFN-γ, IP10, IL-2R and IL-6 [30]. Cytokine storm leads to 
fibroblast proliferation followed by ECM and fibrin deposi-
tion resulting in disruption of lung alveolar structure. These 
changes in lung tissue lead to severe clinical outcomes 
including acute respiratory distress syndrome (ARDS), 
acute lung injury, fibrosis, pulmonary embolism, deep vein 
thrombosis, and even death [31]. In order to prevent these 
devastating clinical outcomes, the first efforts have been 
carried out for rapid and reliable diagnosis of the virus.

DIAGNOSTICS: FIRST STEP OF COMBAT 
AGAINST SARS-COV-2

Early and rapid detection of the disease is crucial for 
controlling the virus transmission. The golden standard 
method in SARS-CoV-2 detection is suggested as viral RNA 
extraction and RT-PCR technique on nasopharyngeal swab 
samples [32–34]. The limitations such as being an invasive 
method, requirement for special training, inducing patient 
discomfort and cough or sneeze, and increasing the risk of 
cross-transmission due to the close contact of the health 
professionals and crowded hospitals makes this sampling 
technique not so desirable for massive screening [33,34]. 

The S and N proteins of SARS-CoV-2 are the main tar-
gets of host antibody reactions following viral infection 
[35]. The S glycoprotein is frequently the focus of rapid 
antigen tests and vaccines because it possesses RBD that 
enables viruses to adhere to the ACE2 receptor on human 
cells, which are highly expressed on the epithelial cells of 
the oral mucosa [36]. Since ACE2 is expressed in human 
oral tissue, particularly in oral tongue, buccal mucosa, 
and gingival tissues, the oral cavity may be thought of as 
a significant point of virus entry. The RBD protein is also 
the focus of antibody detection assays that are helpful in 
seroepidemiological investigations, risk assessment of the 
individual, and figuring out how long the anti-RBD anti-
body response will last [37]. 

Human saliva and the salivary glands are potential 
sources of SARS-CoV-2 transmission, on the other hand, 
saliva can be a potential tool in detecting the disease [38,39] 
and microbial species such as Epstein–Barr virus, herpes 
simplex virus, hepatitis A, B, and C viruses, Rabies virus, 
cytomegalovirus, human papillomavirus, human immu-
nodeficiency virus, Norovirus, and many more [33,38]. 
Moreover, dental biofilms of symptomatic COVID-19 
patients harbor SARS-CoV-2 RNA and may serve as a 

potential reservoir with an essential role in SARS-CoV-2 
transmission [40]. SARS-CoV-2 RNA can be detected in 
supragingival and subgingival biofilms, irrespective of the 
periodontal condition, and systemic viral load [41]. Oral 
fluids both saliva as well as gingival crevicular fluid (GCF) 
reduce the need for specialized health workers and can be 
self-collected outside hospitals. Being economical, easier 
to ship and transport than serum samples, not clotting like 
blood, being handled efficiently, having reduced nosoco-
mial transmission risk are the other benefits of oral fluids 
[33,34]. Compared to saliva, GCF comprises highly con-
centrated biological components. Saliva is thought to have 
about 500 times fewer antibodies than blood, while GCF 
is thought to have at least more than 500 times more than 
saliva. It has been demonstrated that highly concentrated 
GCF is noticeably more sensitive to Ig concentrations and 
may represent circulating Ig concentrations after immuni-
zation [36] but still, further research is necessary to deter-
mine whether saliva and GCF indicate similar levels of 
immunoglobulin response to a blood sample.

Silva et al. conducted a systematic review investigating 
the saliva samples for SARS-CoV-2 diagnosis in 2020. In 
total, 39 studies were included and the authors reported 
that saliva samples have similar performance when com-
pared with the nasopharyngeal swabs, suitable for epidemi-
ological purposes, and valuable for detecting asymptomatic 
and pre-symptomatic infections, and suggested saliva as 
a promising resource in the SARS-CoV-2 detection [33]. 
Fakheran et al. conducted another review, and reported that 
the method of sampling provides proper accuracy and reli-
ability regarding viral load monitoring based on RT-PCR 
technique [42]. Azzi et al. classified diagnostic methods 
for detecting SARS-CoV-2 on saliva samples as molecu-
lar tests (rRT-PCR), point-of-care tests (reverse transcrip-
tion loop-mediated isothermal amplification (RT-LAMP), 
Specific Highsensitivity Enzymatic Reporter UnLOCKing 
(SHERLOCK), which is a combination of viral RNA ampli-
fication, LAMP and Clustered Regularly Interspaced Short 
Palindromic Repeat (CRISPR) technologies), antibody 
testing (lateral flow assay, LFA) and enzyme-linked immu-
nosorbent assay (ELISA) in a review article [43]. Recent 
articles investigating the potential of implementing micro-
fluidistics approach in SARS-CoV-2 detection [44]. 

The current literature supports that human saliva can be 
a preferable sample collection method for the COVID-19 
diagnosis, however, there is insufficient evidence to suggest 
its use for mass screening [45,46].  Taken together, supra 
and subgingival dental biofilm, saliva, and GCF are each 
regarded as reservoirs for SARS-COV-2, similarly, clini-
cal samples taken from nasopharynges and oropharynges, 
secretions from the lower respiratory tract, bronchoalveo-
lar lavage fluid, rectal swabs, blood, and feces. Just as GCF is 
a potential reservoir for SARS-COV-2, it also has the poten-
tial to reflect serum antibody levels, and collecting GCF or 
saliva is a more favorable noninvasive sampling method 
than blood collection. 
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BIOACTIVE SUBSTANCES FROM NATURAL 
SOURCES AGAINST SARS-COV-2 

During the pandemic, bioactive substances that can be 
used to develop resistance in the body to viruses (SARS-
CoV-2) or to evaluate it for use in the production of anti-
viral drugs has gained a lot of significance. For this reason, 
scientific authorities have focused on approaches to reduce 
the risk of transmission by limiting viral load capacity or to 
re-purpose other active agents that may show anti-SARS-
CoV-2 activity.

ORAL AND NASAL CARE PRODUCTS TO DE-
CREASE VIRUS TRANSMISSION 

The oral cavity is an important side of entry for the 
SARS-CoV-2 virus [47]. Human-to-human transmission 
routes can be droplets and aerosol particles. The mobility of 
a single droplet is limited by its size. When talking, eating, 
coughing, sneezing, or even breathing; products of saliva 
droplets with microorganisms and viruses are released and 
distributed. Each cough (approximately equivalent to a 
5-min chat) or sneeze can produce about 3,000 or 40,000 
saliva droplets, respectively [32,38]. The salivary glands are 
the primary replication site of SARS-CoV-2 [48]. SARS-
CoV-2 is transmitted through the nose and mouth, and it is 
reported that oral transmission is 3-5 times more common 
than nasal transmission. For example, it has been reported 
that the viral load in the saliva of individuals infected with 
the delta variant is 1,260 times higher than in individuals 
infected with previous strains [49]. As the salivary glands 
are the primary site of SARS infection, reducing the viral 
load in saliva reduces the risk of transmission from infec-
tion-carrier and can help reduce the severity of SARS-
CoV-2 [49,50]. 

Antiseptic agents such as cetylpyridinium chloride 
(CPC), povidone-iodine (PVP-I), and delmopinol hydro-
chloride to oral care products has been frequently used 
during the pandemic period to reduce the viral load in the 
mouth [51]. The efficacy of nasal spray and gargle solutions 
prepared with different PVP-I concentrations (0.4%, 0.5%, 
0.6% and 1%) against SARS-CoV-2 has been demonstrated 
[52,53]. A hypertonic alkaline nasal irrigation (HANI) 
solution, which is based on Lake Van, Türkiye, has recently 
been introduced. It contains potassium, sulfate, bicarbon-
ate, sodium, chloride and has a pH of 9.3 (12 g/L sodium 
chloride (NaCl), 2 g/L sodium sulfate, 0.8 g/L potassium 
chloride, 0.1 g/L calcium chloride dihydrate, 1.1 g/L magne-
sium sulfate heptahydrate, and 4 g/L sodium bicarbonate). 
The hypertonic component of HANI creates a hyperos-
molar extracellular space and the SARS-CoV-2 undergoes 
conformational changes in this alkaline and hypertonic 
environment, inhibiting its cell fusion function [7,54,55] . 
However, in the use of mouthwashes containing antimicro-
bials to reduce the viral load, the contact time of the mouth-
wash with the oral mucosa is short [56] Investigation of 

longer-term receptor binding/blocking proteins to reduce 
viral load in the saliva still attracts researchers [56,57]. Plant 
cell bioencapsulation is being developed as a new strategy 
to deliver drugs against pathogens colonizing the oral cav-
ity by reducing SARS-CoV-2 in saliva to reduce re-infec-
tion and transmission [58]. The use of viral trap proteins 
(CTB-ACE2, FRIL) expressed from plant cells and trans-
mitted through the gum to reduce the amount of viral load 
in saliva is one of the most important approaches recently. 
In recent studies, it has been aimed to reduce the viral load 
in the oral mucosa of proteins produced from plants placed 
in the gum and viral trap proteins transmitted through the 
gum to reduce the transmission of SARS-CoV-2 or influ-
enza viruses [56,58]. 

Nasal and oral irrigation methods provide mechanical 
cleaning, symptomatic relief, and can help prevent virus 
transmission by reducing viral load. They should be con-
sidered an important method in infection control and the 
prevention of its spread. Based on the information available 
in the literature, it appears that nasal or oral irrigation with 
certain solutions can reduce the nasopharyngeal viral load 
of SARS-CoV-2. This is likely due to the changes in the con-
formation of the viral S protein caused by the substances in 
the nasal lavage solutions, as well as the mechanical clean-
ing provided by the irrigation. However, it is important to 
note that irrigation methods are not a substitute for other 
preventive measures such as vaccination, wearing masks, 
and practicing good hand hygiene.

FOOD SUPPLEMENTS 

Functional foods and superfoods contain a variety of 
nutrients (i.e vitamins, minerals, flavonoids , etc.,) that 
seem to be beneficial for us to fight diseases. During the 
pandemic period, an increase has been observed in stud-
ies to improve the immune system with food products 
or nutritional supplements. Several dietary components 
and active compounds have been explored as health-pro-
moting agents. Flavonoids are one of the most promis-
ing active compounds against SARS-CoV-2 due to their 
excellent anti-inflammatory, antiviral, antioxidant prop-
erties and immunomodulatory activity [59,60]. Some 
common flavonoids such as Quercetin, Rosmrinic acid, 
Hesperitinapigenin and Luteolin have better in vitro inhib-
itory activity. Numerous studies have demonstrated that 
these compounds were able to inhibit the major targets of 
SARS-CoV-2 [61,62] (Table 1).

Worldwide consumption of dietary supplements has 
increased during the COVID-19 pandemic. Although these 
compounds appear promising in the treatment of COVID-
19, there is currently insufficient evidence that any ingre-
dient in food or any diet to follow definitively prevents or 
treats COVID-19. Further experimental and clinical studies 
are certainly needed to confirm this suggestion to provide 
a comprehensive evaluation of the substance’s potential use 
as a food additive or health supplement.



Sigma J Eng Nat Sci, Vol. 41, No. 3, pp. 625−655, June, 2023 629

Table 1. Flavonoid-rich compounds against SARS-CoV-2

Natural Sources 
(mg/100g fresh weight)

Flavonoid Uses & Health Benefits SARS-CoV-2 
target

Ref.

*Dill (79)
*Fennel leaves (46.8)
*Onions (45)
*Chili pepper (32.6)

Quercetin Numerous health advantages, including 
those related to the cardiovascular system, 
the prevention of cancer, the reduction of 
inflammation, and the alleviation of asthma 
symptoms.

Mpro, TMPRSS2 [63,64]

*Ginkgo biloba (68.47)
*Spinach (55)
*Kale (47)
*Dill (40)

Kaempferol Therapeutic effects include those antioxidant, 
anti-inflammatory, antimicrobial, anticancer, 
cardiovascular, nervous system, diabetes, 
osteoporosis, estrogenic/antiestrogenic, 
anxiolytic, analgesic, and antiallergic agents.

ACE-2, S [62–64]

*Grape, black (45)
*Grape, white (45)
*Grape juice (62)
*Wine, red (79)

Myricetin Fights cancer, type 2 diabetes, liver damage, 
heart disease, obesity, and osteoporosis

Mpro, TMPRSS2 [64–66]

*Raw Chinese Celery (34.87)
*Oregano (1028.75)
*Juniper berries (69.05)
*Radicchio (37.96)
*Dried Parsley (19.75)
*Peppermint fresh (11.33)
*Thyme fresh (51)

Luteolin Many health benefits, including: protection 
from sun and free radicals; enhancement of 
cardiovascular and nervous system health; 
reduction of the risk of cancer; and many 
more uses.

Mpro, ACE-2, S [64,67]

*Grapefruits (115-384 mg/L)
*Sour orange (>100mg/L)
*Tomatoes (0.68)

Naringenin The effects of this compound include 
those of an anti-diabetic, anti-atherogenic, 
depressive, immunomodulatory, anti-
tumor, anti-inflammatory, DNA-protective, 
hypolipidemic, antioxidant, peroxisome 
proliferator-activated receptor (PPAR) agonist, 
and a memory-improving PPARs activator.

Mpro, ACE-2 [64,68–70]

*Orange (citrus sinensis) (970)
*Peppermint dried (480.85)
*Tangor or Clementine (39.9)
*Sweet orange (28.6)

Hesperidin Cardiovascular health, type 2 diabetes, 
inflammation reduction, cutaneous functions, 
wound healing, protection from ultraviolet 
radiation, anti-cancer effects, reduced risk of 
infection, and lighter skin are just a few of the 
benefits.

Mpro, ACE-2, RBD-S [64,69,71]

*Green tea (10-80)
*Dark chocolate (46-61)
*Beans (35-55)
*Apple (10-43)
*Red raspberry (2-48)

Catechin Effects against cancer, obesity, diabetes, 
cardiovascular disease, infection, the liver, and 
the nervous system

Mpro [64,72]

*Red raspberry raw (0.53)
*Strawberry raw (0.50)
*Beans (1.63)

Cyanidin Strengthening the body’s natural defenses 
against free radicals, inflammation, cancer, 
diabetes, toxicity, cardiovascular disease, and 
neurological disorders.

Mpro, RdRp [64,73]

*Olive oil extra virgin (1.17)
*Olive oil virgin (0.10)
*Olive oil refined (0.03)
*Marjoram dried (4.40)
*Italian oregano (3.50)
*Rosemary (0.55)

Apigenin Many diseases, including diabetes, 
Alzheimer’s, forgetfulness, depression, 
insomnia, cancer, etc.

Mpro [64,74]



Sigma J Eng Nat Sci, Vol. 41, No. 3, pp. 625−655, June, 2023630

ALGAL PRODUCTS

The production of bioactive substances that can be 
used to create resistance in the body against viruses such as 
SARS-CoV-2 or to evaluate it in the production of antiviral 
drugs has gained much more importance during the pan-
demic period [75]. In this context, microalgae are a very 
powerful weapon in the fight against the pandemic, as it is 
one of the leading sources of biomass rich in bioactive sub-
stances [76]. Due to their distinctive and rich composition, 
they have the potential to be useful in the prevention and 
treatment of several contagious and fatal viruses, including 
SARS-CoV-2 [77] and also they can be used as a vaccine 
carrier [78].

Numerous investigations have revealed that the bioactive 
components such as sulfated polysaccharides, astaxanthin, 
c-phycocyanin, and lectins from algal biomass have thera-
peutic benefits, including antibacterial, antiviral, antifungal, 
anti-tumor, and neuroprotective actions [79,80]. Kwon et 
al. reported that sulfated polysaccharides are tightly bound 
to the S proteins of SARS-CoV-2, and accordingly, these 
polysaccharides can be used in the diagnosis and treatment 
of viral diseases [81]. Sami et al. investigated the antiviral 
activity of polysaccharides such as carrageenan, fucoidan, 
ulvan, agar, and alginate obtained from algae against var-
ious viruses and stated that algal polysaccharides can be 
used in antiviral treatments against viruses [82]. Tzachor et 
al. stated that Arthrospira platensis extracts, which are rich 
in C-phycocyanin content with a pigment-binding feature, 
can be used to prevent virus-induced cytokine storms such 
as COVID-19 and influenza. They have also emphasized 
that these extracts can be used as nutritional supplements 
in high-risk groups such as the elderly and chronic patients 

[83]. Berndt et al. also produced the recombinant SARS-
CoV-2 spike receptor binding domain (RBD) protein, 
which is used as an antigen in vaccines developed against 
SARS-CoV-2, using C. reinhardtii microalgae [84]. Gülsoy, 
and Ünlü evaluated the antiviral activity of Antarctic 
microalgae C. pyrenoidosa OZCIMEN.001 and C. variabilis 
YTU.ANTARCTIC.001 against SARS-CoV-2, respectively. 
It was found that, C. pyrenoidosa OZCIMEN.001 and C. 
variabilis YTU.ANTARCTIC.001 showed 100% antiviral 
activity when diluted 1/2 times in environments where the 
virus was present [85,86]. The antiviral action mechanism 
of some components obtained from algae is summarized 
in Table 2. Although algal-derived compounds are effective 
against SARS-CoV-2 or similar viruses and related symp-
toms, more research is needed in this area [87].

FUNCTIONAL NANO AND BIOMATERIALS 
AGAINST SARS-COV-2

Evaluating the efficacy and safety of a drug or vaccine 
and using it for therapeutic purposes is a time-consum-
ing and complex process that requires the collaboration of 
experts from various disciplines such as drug metabolism, 
pharmacology, medicinal chemistry, and clinical research 
[96]. During COVID-19, the rapid increase in the num-
ber of patients worldwide prompted immediate actions to 
identify and control virus cases. Nanoformulations have 
been identified as promising potentials in this context 
due to their exceptional benefits. This section will discuss 
nanoformulations developed for COVID-19 diagnosis and 
treatment.

Table 2. Antiviral effect mechanism of algal components

Algae Compound Virus Mechanism Ref.
Sargassum 
henslowianum

Fucoidan HSV-1 Blocking adsorption to the host cell [88]

Red Algae Neoagarohexaos Norovirus Strengthening the immune system through activation 
of TLR4 signaling

[89]

U. pertusa Ulvan VSV Inhibition of virus replication [90]
Sargassum 
fusiforme

Polysaccharide ALV-J Blocking adsorption to the host cell [91]

Monostroma 
nitidum

Polysaccharide EV71 Blocking early steps of the viral life cycle by 
downregulating the host PI3K/Akt

[92]

Ascophyllum 
nodosum

Polysaccharide HIV-1, 
HBV, 
HCV

Inhibition in the early stage of viral infection [93]

Nizamuddinia 
zanardinii

Fucoidan HSV-2 Blocking virus adsorption [94]

Monostroma 
latissimum

Polysaccharide EV71 Inhibition of viral replication by targeting the viral 
capsid protein VP1

[95]
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SURFACE DESIGN STRATEGIES FOR 
PROTECTION 

Virus-contaminated materials lead to the spread of 
disease, so antiviral materials became even more import-
ant during the COVID-19 pandemic. Studies to prepare 
antiviral materials for use in protective equipment (face 
masks, gloves), personal products (cell phones, brushes), 
food packaging, and textiles (wet wipes, protective cloth-
ing) have intensified during the pandemic [97]. Antiviral 
mechanism collapses the integrity of subcellular structures, 
disrupt the cell membrane, or inhibit protein synthesis [98]. 
Strategies based on contact-killing and surface repelling 
commonly have been used for these antiviral mechanisms. 
In contact killing strategies, the surface composition of the 
materials have been modified using biocidal agents (e.g., 
polycations, graphene, metal oxides, or nanoparticles) [99]. 
For example, positively charged polycations can disrupt the 
membrane by binding to the active site of the viral capsule 
[100]. Tuñón-Molina et al. prepared an antiviral facial pro-
tective equipment made up of polyethylene terephthalate 
and the surfaces coated with benzalkonium chloride that 
inhibits the envelope of RNA viruses. The proposed face 
shield inactivated the viruses after 1 min [101]. Graphene 
is a useful biocidal agent in the design of antiviral materi-
als due to its sharp edges to disrupt the membrane and its 
ability to form reactive oxygen species (ROS) [102]. Fukada 
et al. reported a SARS-CoV-2 inactivation route by using 
graphene oxide (GO) nanosheets. S and N proteins decom-
posed due to the adsorption of negatively charged GO and 
inactivated the virus. Therefore, it can be used as a coating 
in the design of clothes, filters, and masks to prevent virus 
transmission [103]. 

Metallic nanoparticles such as silver [104], copper [105], 
zinc [106], and titanium dioxide [107] also used widely due 
to their antimicrobial mechanisms like lipid peroxidation, 
ROS generation, and damage to genetic material [108]. It is 
known that silver (Ag) ions and nanoparticles have antibac-
terial, anti-cancer, anti-inflammatory, antiplatelet, anti-an-
giogenesis, and antifungal properties. Silver nanoparticles 
(AgNPs) have antiviral properties in addition to these 
superior properties [109]. Since materials such as personal 
protective equipment and air conditioning systems do not 
have an intrinsic antimicrobial/virucidal effect, they have 
become the primary focus for combating COVID-19. The 
anti-infective coating made of silver has been shown to 
inactivate the virus which adheres to surfaces for about 12 
hours [110]. Balagna et al. have designed Ag nanocluster/
silica composite sputter coating directly Filtering FacePiece 
3 (FFP3) face mask and examined the virucidal effect of 
Ag against SARS-CoV-2. With this coating, the composite 
have showed that Ag was able to completely reduce SARS-
CoV-2 to zero on the mask [111]. It has been stated that this 
coating can apply to various surfaces such as metallic, glass, 
and ceramics, so it can have great importance for security 

in a crowded area (i.e. such as supermarkets, hospitals, and 
schools) to inhibit the spread of SARS-CoV-2.

Hosseini et. al. fabricated a transparent antimicrobial 
coating including Ag-oxide particles in a silicate matrix 
to cover the touchscreen and the virus was inactivated by 
95.4% after 1 h. [112]. In surface repelling strategies, the 
antiviral effect is obtained by nanopatterns that prevent 
the attachment of organisms onto the material surfaces. 
Lithographic techniques, wet-etching techniques, direct 
writing techniques, and instability-induced polymeric 
patterning are the main techniques for surface nano pat-
terning [113,114]. Hasan et. al formed randomly aligned 
nano ridges on the aluminum (Al) alloy by using wet-etch-
ing techniques and obtained high antiviral activity against 
SARS-CoV-2 within 6 h [115]. In another study, a porous 
surface composed of parallel rectangular grooves and rect-
angular pillars was prepared on Al surfaces using a litho-
graphic technique and less virus survival rate was shown on 
these surfaces [116]. 

Zhou et al. prepared a polymer film using AgNPs and 
nanoscale conical pillars by spray coating and nanoim-
printing lithography. The enhanced antiviral effect shown 
on these surfaces compared to only AgNPs ones. They are 
ideal candidates to use in plastic products and food pack-
aging [114]. Moreover, many recent studies combined pho-
tosensitive compounds with antiviral strategies [117,118]. 
When photosensitizer is excited with light and reacts with 
oxygen, ROS or singlet oxygen that induces oxidative dam-
age to biological species is produced [113]. For instance, 
Zhang et al. prepared a cellulose wipe combined with cat-
ionic conjugated oligomer electrolytes (c-OPE) via the sim-
ple dip-coating process. The c-OPE-coated wipes showed a 
2.46 log inactivation value against SARS-CoV-2 when com-
pared to uncoated ones after 10 min light-activation [118].

NANO-DIAGNOSTIC SYSTEMS

During the pandemic, molecular assays such as PCR or 
nucleic acid hybridization to detect SARS-CoV-2, serolog-
ical and immunological assays based on the detection of 
patients’ antibodies or antigenic proteins in infected indi-
viduals have been commonly used tests in the diagnosis of 
COVID-19 [119]. The mono- and poly-clonal antibodies 
are widely used in diagnosis to detect antigens and antibod-
ies for SARS-CoV-2 [120–123]. 

Nano-diagnostic systems have advantages such as 
increasing the efficiency of conventional diagnostic tools, 
reducing macro-scale production or diagnostic costs, 
increasing sensitivity, and shortening the turnaround time 
[124]. Thanks to these features, nano-diagnostic systems 
are beneficial for diagnosing newly emerging infections 
such as COVID-19 [125]. The large number of samples 
to test during the pandemic is a significant challenge for 
hospital laboratories. This situation has brought nano-di-
agnostic systems to the forefront with advantages such as 
high accuracy, fast detection, and low cost, which can meet 
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the need for simple and fast procedures to identify posi-
tive cases [126,127]. In addition, nanomaterials are suitable 
candidates for the development of biosensors for the detec-
tion of various viruses, including SARS-CoV-2, due to their 
unique physicochemical properties that differ from bulk 
materials and their ability to be easily functionalized with 
biorecognition molecules such as antibodies, peptides, and 
aptamers [128].

The design strategies of nano-diagnostic systems based 
on developing tools detect SARS-CoV-2 RNA or dis-
ease-related antigens and antibodies. For instance, lateral 
flow test kits have been developed using cellulose nano-
balls, colloid gold, and fluorescent nanoparticles. These 
tests, which approved for emergency use by the FDA 
during the pandemic, facilitated the early detection of the 
disease, continuous monitoring, and patient surveillance in 
cases of COVID-19 [129]. On the other hand, nanotech-
nology-based colorimetric bioassays have attracted much 
attention for the design of biosensors with simple and 
visual outputs without the need for complex instruments. 
Moitra et al. developed plasmonic nanoparticles by coating 
gold nanoparticles (AuNPs) with thiol-modified antisense 
oligonucleotides specific to the N phosphoprotein gene of 
SARS-CoV-2 [130]. They showed that with this analysis 
method, which works with the principle of surface plasmon 
resonance exchanges and allows detection with the naked 
eye, they could diagnose positive cases within 10 min from 
isolated RNA samples. Lee et al. developed a colorimetric 
lateral flow immunoassay using AuNP-antibody conju-
gates. They showed that this test provides sensitive detec-
tion in 15 min with a limit of detection (LOD) value of 5 
× 104 copies/ml [131]. Furthermore, they showed that this 
lateral flow kit could accurately detect all positive and nega-
tive samples from 19 clinical validated by RT-PCR. The use 
of biosensors developed for the detection of SARS-CoV-2 
RNA or marker proteins such as S and N as nano-diagnos-
tic systems investigated by many researchers. Zhao et al. 
developed an electrochemical sensor capable of detecting 
the RNA of SARS-CoV-2 using GO with calixarene func-
tionality [132]. They showed that this sensor could practi-
cally detect the RNA of SARS-CoV-2 using a smartphone 
without nucleic acid amplification and reverse transcrip-
tion. They also stated that the LOD value determined in 
clinical samples for this sensor is 200 copies/ml, the lowest 
value ever published for RNA measurements. Fabani et al. 
aimed to improve the performance and increase the sensi-
tivity of the electrochemical sensor they designed by using 
screen-printed electrodes modified with carbon black 
nanomaterial to detect S or N protein of SARS-CoV-2 in 
saliva [133]. They have shown that the biosensor can per-
form rapid analysis as quickly as 30 min with a low LOD. 
They also stated that this miniaturized and portable device 
has a high potential for market entry thanks to its easy use 
and non-invasive sampling features. Song et al. developed 
a smartphone-based upconversion luminescence diagnos-
tic platform using oligo-modified nanoprobes and gold 

nanoprobes for rapid point-of-care detection of the SARS-
CoV-2 N gene [134]. They reported that the lumines-
cence platform achieved a LOD of 11.46 × 10−15 M without 
amplification. The assay produced consistent and reliable 
diagnostic results in nine clinical samples confirmed by 
RT-qPCR within 20 min.

The use of nano-diagnostic systems to detect immu-
noglobulins associated with COVID-19 has been benefi-
cial for accurately detecting suspected cases or obtaining 
information about the prognosis of the disease. Chen et al. 
developed a rapid and sensitive lateral flow immunoassay 
using lanthanide-doped polystyrene nanoparticles to detect 
anti-SARS-CoV-2 IgG in human serum [126]. They stated 
that the test could detect IgG antibodies in 10 min using a 
100 µl aliquot of serum sample (1:1000 dilution), and it can 
allow rapid and sensitive detection of anti-SARS-CoV-2 
IgG in human serum, allowing identification in suspected 
cases. On the other hand, it is known that IgA is an alterna-
tive biomarker for the early stages of COVID-19 infection. 
Roda et al. developed a colorimetric and chemilumines-
cence format lateral flow immunoassay immunosensor that 
can measure the color signal provided by nanogold-labeled 
anti-human IgA for the detection of IgA in serum and 
saliva [135]. They showed that the lateral flow test was sen-
sitive enough to detect IgA from serum and saliva samples. 
Hryniewicz et al. developed an impedimetric biosensor to 
monitor SARS-CoV-2 seroconversion by using polypyrrole 
synthesized in both spherical and nanotubular morphol-
ogy and AuNPs, 3-mercaptopropionic acid and covalently 
bound SARS-CoV-2 N protein [136]. They showed that 
polypyrroles in nanotubular morphology could measure 
0.4 ng/ml of monoclonal antibody and detect specific anti-
bodies in human serum in less than one hour and with 
precision.

NANOVACCINES

Vaccination is the most effective medical intervention 
for controlling and preventing infectious diseases such as 
SARS-CoV-2. Until recently, more than 130 vaccine candi-
dates for SARS-CoV-2 were under development, including 
more than 20 in Phase 2 or 3 studies [137]. Recent advances 
in nanotechnology have accelerated the development of 
nanovaccines, in which nanoparticles used to deliver vac-
cines and improve their efficacy. Nanovaccines are nano-
sized particles with dimensions ranging from 1-1000 nm 
that carry virus-associated antigens (Figure 2). They can 
protect the antigens from enzymatic breakdown, allow for 
controlled or prolonged release of antigens and promote 
the uptake of antigens by targeting specific immune cells. 
Therefore, nanovaccines have intrinsic adjuvant effects 
since they can improve the ability of antigens to activate 
immune cells [138]. 

The most intensively researched nanovaccine formu-
lations include polymeric nanoparticles, lipid nanopar-
ticles, liposomes, virosomes, protein nanoparticles, and 
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virus-like particles (VLPs). Polymeric nanostructures can 
be promising strategies for vaccine development against 
SARS-CoV-2. They have excellent features such as good 
bioavailability, drug loading, prolonged release, and sta-
bility and can transport virus-associated antigens on their 
surface or within their core. Natural and synthetic polymers 
such as gelatin, hyaluronic acid, alginate, polylactic acid 
(PLA), PGA (polyglycolic acid), poly lactic-co-glycolic acid 
(PLGA), polyethyleneimines (PEI), and polyamidoamine 
(PAMAM) can be widely used as vaccine carriers [139]. 
Polymeric nanostructures categorized as particles, micelles, 
nanogels, and polymersomes, as well as core-shell struc-
tures in which polymeric particles are covered with lipids, 
cell membranes, or proteins [140] In a study, intranasal 
administration of SARS-CoV-2 S glycoprotein RBD-loaded 
chitosan nanoparticles into mice induced mucosal immu-
nity by increasing IgG and IgA responses and increased 
antibody responses including serum IgG, IgG1, IgG2a, IgA 
and neutralizing antibodies. These findings demonstrated 
that RBD-loaded chitosan nanoparticles could mimic the 
natural route of SARS-CoV-2 infection and thereby stim-
ulate both local mucosal and systemic immune systems 
[141]. Shahjin et al. developed a multiple polymer-based 
microsphere system for the encapsulation of whole chemi-
cally inactivated SARS-CoV-2 to provide sustained antigen 
release. Polymers with different biodegradation rates, such 
as polycaprolactone (PCL), PLGA, and PLLA were mixed 
to achieve early and late release of SARS-CoV-2 antigens 
from the degrading components, thereby minimizing the 
need for repetitive dosing and improving antiviral immu-
nity [142]. 

Solid lipid nanoparticles (SLNs) are complex lipid 
spheres with solid hydrophobic cores measuring 50 to 
1000 nm in size. They are biocompatible and have a high 
antigen-loading capacity. Because ionizable lipids in SLNs 
are quickly protonated into cationic forms in the acidic 
environment of endosomes, which then interact with the 
anionic phospholipids in the endosomal membrane, dis-
rupting the membrane bilayer and allowing antigens to 
release into the cytosol, SNLs can naturally facilitate anti-
gen entry into endocytic vesicles. mRNA-loaded SNLs 
vaccines, in particular, cause the release of mRNA into the 
cytosol, where it is transcribed into an antigenic protein, 
resulting in improved immune responses to the infection 
[143]. Consequently, two SLNs formulated mRNA vac-
cines, mRNA1237 (ModernaTX, Inc.) and BNT162b2 
(Pfizer-BioNTech) have been clinically approved for human 
administration against SARS-CoV-2. They reported to pro-
vide 94.1% and 95% protection against SARS-CoV-2 infec-
tion, respectively, without any significant side effects [144].

VLPs are biomimetic nanostructures with diameters 
ranging from 20 to 100 nm containing small fragments 
of virus-derived structural proteins. Their structures are 
similar to natural viruses with the exception that they lack 
viral genomes. VLPs can elicit robust cellular and humoral 
immune responses, as well as high titers of neutralizing 
antibodies. However, few studies conducted to determine 
the protective effects of VLP-based vaccinations against 
SARS-CoV-2 [145]. A research team developed a SARS-
CoV-2 VLP as vaccine candidate, Novavax, containing 
the coronavirus recombinant S protein. The assessment of 
immunogenicity and safety of co-formulation of Novavax 
with saponin-based adjuvant, Matrix-M (NVX-CoV2373) 
are ongoing in Phase 2 studies [146].

NANOTHERAPEUTICS

ANTIBODY BASED PROPHYLACTIC/
THERAPEUTIC FORMULATIONS

Passive immunization with protective antibodies that 
might give susceptible individuals instantaneous immu-
nity is one of the most efficient methods for controlling 
the pandemic [147]. Various studies have proven the pro-
phylactic and therapeutic efficacy of antibody therapies 
against viral infections that cause pandemics. It is shown 
that both mono- and poly-clonal antibodies can be used for 
antibody therapies [148–150]. However, it is substantially 
more expensive to produce monoclonal antibodies than 
polyclonal antibodies. It is known that their production 
also takes much time and demands a lot of expertise and 
training [151]. In this context, polyclonal IgY antibodies 
obtained from chickens have become an internationally 
accepted practice since 1996 [152]. Due to IgY’s superior 
capabilities to IgG, its use as a prophylactic and therapeutic 
agent has grown throughout time [153–155]. IgY’s ability to 

Figure 2. Nano-vaccine design strategies a) subunit; b) in-
activated; c) live-attenuated; d) virosome; e) virus-like; f) 
liposomal, and g) polymeric carrier for subunit; h) liposo-
mal, i) micellar, and j) polymeric carrier for mRNA; k) an-
tigen conjugated metallic nanoparticle.
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be obtained from egg yolk without harming the animal and 
without suffering is a significant advantage. In addition, the 
production process is straightforward, and a large amount 
of production (100-150 mg of IgY per egg) is possible [156]. 
The large production volumes of IgY make them excellent 
candidates for prophylactic and therapeutic use during the 
pandemic [157].

These antibodies have tremendous promise for pro-
phylactic and therapeutic usage in the ongoing COVID-19 
pandemic [158]. IgY antibodies allow it to recognize certain 
mammalian conserved protein epitopes due to the signif-
icant evolutionary distance between mammals and birds 
[159]. Neutralizing IgY antibodies may offer a potential 
passive immunization against infections caused by emerg-
ing pathogens, including SARS-CoV-2. It can also provide 
safe use as a nasal, mouth spray, and mouthwash [158]. 
IgY also does not interact with or activate the mammalian 
complement system or Fc receptors. Therefore, it does not 
trigger the disease’s antibody-dependent development and 
may even stop complement-mediated harmful inflamma-
tory reactions [155]. Therefore, administering neutraliz-
ing IgY intravenously may be helpful to treat SARS-CoV-2 
infection [160]. Before COVID-19, IgY has been thor-
oughly investigated for treating several respiratory viruses 
[161,162]. The treatment of pathogenic coronaviruses with 
these antibodies has also proved effective [163]. In viral 
pathogenesis and infection, the S protein plays an important 
role. Therefore, it recognized as a crucial target for raising 
long-lasting neutralizing antibodies [164]. The S1 subunit 
is where most neutralizing epitopes are found [165]. As a 
result, the SARS CoV-2 S protein discovered epitope is a 
strong candidate for developing antibody-based therapy 
as an immunotherapeutic agent [166]. Bao et al. produced 
IgY targeting the S1 subunit of SARS-CoV-2 and reported 
that it might be a good candidate for COVID-19 pre-and 
post-exposure prophylactic or therapeutic [167]. Similarly, 
Lu et al. have reported that IgY targeting the S1 subunit is 
effective against SARS-CoV-2 [160]. 

Since mucosal immunity is limited in controlling viral 
infections [167], IgY-based mucoadhesive formulations 
such as nasal or oral sprays can help strengthen the bar-
rier function of the nasal, oral, and gastrointestinal mucosa 
[166]. To determine if anti-SARS-CoV-2 IgY antibodies 
can be employed in nasal or oral spray formulation, Shen 
et al. generated anti-SARS-CoV-2 IgY. They assessed the 
persistence time in the mouse nasal and oral cavities [168]. 
The study showed that IgY was retained in the nasal and 
oral cavities at detectable concentrations for several hours 
after administration for SARS-CoV-2 infection. According 
to these findings, anti-SARS-CoV-2 IgY can be admin-
istered orally or nasally and remain in the upper respira-
tory tract for several hours, depending on the application 
method. To capture the virus in the nasal mucosa, Frumkin 
et al. designed nasal drops for RBD-specific IgY antibod-
ies [155]. The result indicated that new emerging vari-
ants including alpha, beta, delta, and omicron neutralized 

by anti-SARS-CoV-2 RBD IgY antibodies. According to 
another study, intranasal injection of RBD-specific IgY (IgY 
anti-RBD S) efficiently blocked the viral S glycoproteins’ 
crucial initial attachment to human ACE2. In addition, it 
was stated that when administered as an intranasal agent, 
IgY had an excellent safety profile [169]. The development 
of nasal spray treatments for SARS-CoV-2 is ongoing, and 
early clinical studies have confirmed that this approach 
is safe and can be used to prevent the respiratory spread 
of SARS-CoV-2 [170]. Finally, since SARS-CoV-2 is not 
transmitted only by nasal inhalation (eye, nose, or mouth 
contact), active IgY antibodies can be easily formulated by 
incorporating them into sterile ophthalmic solutions [171].

ANTIMICROBIAL POLYMERS 

In the treatment site, using a new drug molecule for the 
treatment of COVID-19 and related bacterial infections was 
nearly impossible because it must be developed and FDA-
approved, which typically takes a decadelong study [172]. 
Therefore, the development of antimicrobial drug systems 
was urgently needed to combat this pandemic infection 
[173–175]. Hence, combination or actively targeted formu-
lations of existing drugs and antibiotics can play a key role 
in the treatment [176]. Moreover, due to a large number 
of hospitalized COVID-19 patients receiving antibiotics, 
antibiotic resistance is expected to be further increased 
[177–179]. The purpose of including antibiotics in the clin-
ical care of COVID-19 was either to manage any co-existing 
bacterial infections or to make use of its probable antivi-
ral properties [180]. Pathogenic bacterial multidrug resis-
tance to antibiotics is one of the biggest global health crises 
[181,182]. Bacterial infection mortality has increased dra-
matically in recent years, threatening public health. 

To overcome these problems, it is now more necessary 
than ever to continue developing efficient treatments for 
bacterial infections that use different action mechanisms 
from antibiotics [179]. Here, polymers offer great potential 
in the development of novel antimicrobial materials due 
to their easier production and modification, mechanical 
properties, biocompatibility, and biodegradability (if neces-
sary). The COVID-19 pandemic has given great impetus to 
the development of new antimicrobial polymers, which can 
be effective against most viruses, bacteria, and also fungi. 
Consequently, we would like to give a brief overview of the 
materials in which we mainly focus on antiviral and anti-
bacterial polymers developed during and after the COVID-
19 pandemic. 

Antimicrobial polymers show outstanding antiviral 
activity either inherently or by integrating with antimicro-
bial agents. While inherent antimicrobial polymers show 
their activity by contacting the pathogen, antimicrobial 
agent integrated polymers act as a carrier and exhibit their 
activity by providing controlled release of the agent (Figure 
3) [183–185]. Chitosan and PEI are two important exam-
ples of polycations (polyelectrolytes with positive charges) 
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that exhibit inherent antimicrobial activity. Carrageenans 
and PLGA are some examples of carrier-type antimicrobial 
polymers in the literature. These inherently antimicrobial 
materials, ranging from nano-scaled polymers [186] and 
nanoparticles [187] to macro-scaled thin films [188] and 
hydrogels [189], have gathered a lot of attention in this 
research area. These antimicrobial polymers play a leading 
role in the development of various approaches for the use 
of polymeric materials against the SARS-CoV-2 virus and 
related bacterial pathogens [190]. In this regard, antimicro-
bial polymers draw interest in food packaging [191], textile, 
surface coating [185], and drug delivery systems [192]. 

In the study of Pyrć et al., the antiviral activity of chi-
tosan against SARS-CoV-2 was investigated in vitro and in 
vivo, and it was shown that it has the potential to be used 
as a nasal spray against SARS-CoV-2 viral infection [193]. 
Emam et al. developed ACE-2 loaded modified polyacrylo-
nitrile nanofibers to prevent the risk of SARS-CoV-2 viral 
infection caused by airborne particles. The study demon-
strated a remarkable approach to the development of stable 
antiviral protective masks [194]. Sulphated polysaccharides 
were shown to be antiviral polymers with effective antiviral 
and low cytotoxic properties for the treatment of SARS-
CoV-2 infection [195]. In the study of Sharif et al., an edible 
gelatin and Persian gum-based film with antiviral activity 
was developed for preventing the transmission of food-
borne viruses [196].

Remdesivir used in COVID-19 treatment has a high 
potential of preventing virus replication by inhibiting 
RNA-dependent RNA polymerase. However, remdesivir’s 
therapeutic effect is restricted because of its extremely poor 

solubility and toxicity at high doses, as well as its low tissue 
distribution, especially in the lungs; thus, it is needed to be 
preserved by a carrier system. For instance, Halevas et al., 
obtained 2, 2-bis(hydroxymethyl)propionic acid (bis-MPA) 
based dendritic systems employed as nano-carriers of rem-
desivir [174]. According to the results, encapsulated remde-
sivir kept its activity while increasing its aqueous solubility 
compared to free remdesivir. Additionally, Vartak et al. 
formulated a stable aerosolized nano-liposomal carrier for 
remdesivir against COVID-19 [197]. The results showed 
that the drug released totally within 50 hours in vitro, had a 
high encapsulation efficiency and nano-size.

To prevent foodborne viruses and bacteria, Amankwaah 
et al. have designed edible films that can be used as anti-
bacterial agents for food packaging [198]. Green tea extract 
was added to the chitosan solution, and the resulting dried 
edible films demonstrated efficiency in lowering murine 
norovirus infection potential. Additionally, the films 
demonstrated antibacterial activity against Listeria innocua 
and E. coli, which were used a stand-in for foodborne 
pathogenic microorganisms.

The majority of COVID-19 masks are biocide-free. 
As a result, developing antibacterial nanonet and filtering 
materials as reusable protection materials capable of inter-
cepting and destroying pathogens is critical for reducing 
cross- and post-infection caused by current masks. Tian et 
al. produced polystyrene grafted by 5, 5-dimethylhydan-
toin, and trimethylamine nanofiber membranes (PSDT/
PU-(PNNMs)) by electrospinning [199]. The efficient and 
stable antibacterial characteristics were provided by the 
covalently integrated membranes with intrinsic N-halamine 
and quaternary ammonium salt groups. This nanonet sys-
tem improved the high air filtration of fine particles and the 
low-pressure drop and showed superior antibacterial and 
antiviral activity against E. coli, S. aureus, and E. coliphage. 
Besides bacterial air filtration, the designed material has the 
potential to be used in water treatment and food packaging.

POLYMER-BASED NANOPARTICLES

During the COVID-19 pandemic, in the search for 
new and effective treatments, one of the promising areas of 
research has been the use of polymer-based nanoparticles 
for drug delivery (Figure 4). Polymeric nanoparticles are 
colloidal particles consisting of natural or synthetic poly-
mers, with sizes ranging from 10 to 900 nm. While these 
nanoparticles increase the drug loading capacity thanks to 
their high surface area they can overcome biological barri-
ers in the body and deliver the drug to tissues that are diffi-
cult to access, such as the central nervous system [200,201]. 
In this process, they help maintain the stability of the drug 
and increase its bioavailability while increasing its circu-
lation time in the blood. Considering the features such as 
carrying multiple drugs, adjustable release kinetics, and tar-
geting, these systems have now become the target of many 

Figure 3. Antiviral applications of polymers.
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scientific areas [202–204]. One of these areas is the fight 
against COVID-19.

Anti-inflammatory drugs and broad-spectrum anti-
virals (i.e., Remdesivir, Favipiravir, Lopinavir/Ritonavir, 
Chloroquine, Daclatasvir, and Dexamethasone) continue 
to be treatment options in the treatment of COVID-19 
patients [205–207]. On the other hand, the effective con-
centrations of these drugs have serious side effects. To 
reduce the side effects of these drugs and to use the advan-
tages mentioned above, many studies have been carried 
out involving the use of polymeric nanoparticles. Wu et al. 
developed Remdesivir-loaded Lisinopril-labeled PLGA-
NPs that target the ACE1 receptor for highly efficient 
co-delivery of both hydrophilic and hydrophobic agents 
[208]. In this context, Uçar et al., synthesized Oseltamivir-
phosphate-loaded PLGA-NPs modified with SARS-CoV-2 
S-binding peptide 1 (SBP1) targeting the ACE2 receptor 
[209]. The researchers reported that the sustained release 
of nanoparticles continued for two months according to 
the Higuchi kinetic model. Gattani and Dawre developed 
Favipiravir-loaded PLGA-NPs and encapsulated these NPs 
in a heat-sensitive gel to increase nasal permeability [210]. 
The results showed that the gel containing nanoparticles 
had a longer release time of 30 hours and showed good 

mucoadhesive properties supporting nasal permeability. In 
2020, Bioavanta-Bosti announced the potential to integrate 
Novochizol™ chitosan aerosol nanoparticle technology, 
which has been shown to strongly adhere to lung epithe-
lial tissues, into anti-COVID-19 drugs [211]. For this pur-
pose, they invited drug developers and clinical researchers 
to work together. Studies have revealed that polymeric 
nanoparticles are preferred due to their long-term sus-
tained release, targeting, and modification to the desired 
properties. However, further research and clinical trials are 
needed to fully understand the potential of polymer-based 
nanoparticles for the treatment of COVID-19.

INORGANIC-BASED NANOPARTICLES

Quantum dots (QDs), graphene, and metal nanoparti-
cles such as magnetic, Au, Ag, titanium, zirconia platinum, 
silica, and their hybrid or composite nanostructures are 
some examples of engineered inorganic-based nanoparti-
cles [212,213]. Inorganic-based nanoparticles produce via 
occurring alkoxide polycondensation reactions includ-
ing hydrolysis reactions or chemical reducing reactions 
of metal oxide ions in some applications [214,215]. With 
the advances in technologies realized on various inorganic 

Figure 4. Nanomaterials that are used for COVID-19 treatment strategies.
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nanoparticles mentioned above, they have been widely used 
to control COVID-19 due to their unique properties for 
drug delivery systems, imaging systems, antiviral facemasks 
and sensors [216,217]. Some of the key characteristics that 
will lead to biological applications of the inorganic NPs are 
regulated stability, increased permeability, high functional-
ization potential, biocompatibility, non-toxicity, site-spe-
cific targeting, and controlled release activation [216,218].

Silica NPs are known as very useful materials in drug 
delivery systems because of their high specific surface area, 
high porosity, low bulk density, biocompatibility, non-
toxic nature, high adsorption capacities, controllable and 
functional surface, and porosity properties [219,220]. Like 
other inorganic nanoparticles, silica NPs have the capac-
ity to encapsulate and carry anti-SARS-CoV-2 therapeutic 
molecules [221]. To bind to the RBD of the viral S pro-
teins via electrostatic interactions and block the S protein 
from further binding with the host receptor, Neufurth et 
al. designed silica NPs encapsulated polyphosphate (polyP) 
[222]. Encapsulation of silica NPs with PolyP (silica/polyP 
nanoparticles) stabilized degradable polyP against alkaline 
phosphatase and this drug delivery system showed a slow 
release of polyP in vitro over 24 h.

Graphene quantum dots (GQDs) with their unique 
physicochemical properties are the next generation of 
effective antiviral nanomaterials [223,224]. GQDs have 
attracted great interest in the healthcare field due to their 
excellent biocompatibility, relative non-toxicity, easy mod-
ification, inertness, high surface/volume ratio, multivalent 
properties, and high solubility in aqueous solutions, and 
therefore GQDs can inhibit viral entry into cell [225,226]
Hsieh et al. demonstrated that N-functionalized GQDs are 
vital in the interaction of the COVID-19 S protein with its 
RBD. Moreover, the addition of polyethylene glycol to the 
structure was observed to be valuable for the dispersion 
and adsorption of GQDs on the pathogen surface, result-
ing in enhanced virus inhibition [226]. QDs can be used 
in the treatment of SARS-CoV-2 not only by themselves 
but also as a drug delivery system. Molecular dynamics 
(MD) study showed that the use of graphene oxide quan-
tum dots (GOQD) as a drug delivery system for Carmofur 
(an effective drug for the treatment of COVID-19) created 
an effective system against COVID, and the π-π stacking of 
the structure together with hydrogen bonding contributed 
significantly to the stability of the Carmofur-GOQD com-
plex [226].

Inorganic NPs are of particular interest not only because 
they deliver the therapeutic agent that is loaded or adsorbed 
on its surface, but also because they allow the stimulus-sen-
sitive properties and intrinsic abilities of some species (such 
as radiation and magnetic properties) to be monitored fol-
lowing in vivo administration to the body of humans or 
various animals using medical imaging (i.e., Theranostics) 
[226].

Arkaban et al. developed Fe–SiO2@PDA NPs nanosys-
tem as a biodegradable Remdesivir delivery system, and 

magnetic resonance imaging (MRI) contrast agent [227]. In 
the study, Fe(III) doped and Rd-loaded mesoporous SiO2-
NPs were synthesized and theranostic Fe–SiO2@PDA-NPs 
were formed by coating with Polydopamine (PDA) as a 
“gatekeeper” for controlled release. Doping of Fe(III) into 
SiO2 NPs induced a biodegradability and drug release rate, 
and also support contrast efficacy in Fe–SiO2 for MRI.

TISSUE ENGINEERING Approaches

Thanks to tissue engineering, which is a multidisci-
plinary science, engineering applied to biological systems 
has led to the emergence of new technologies and created 
solutions to the most important problems of the 21st cen-
tury [228,229]. Most biomedical research aims to identify 
the mechanisms of human disease or to develop effective 
methods of diagnosis, prevention, or therapeutic interven-
tion via learning more about the disease. The inability to 
use human subjects in the early stages of basic scientific 
research and the inability of animal models to examine 
the pathophysiology of many human diseases have led 
scientists to develop alternative disease model strategies 
[230,231]. With the recent advances in tissue engineering 
and microfabrication, significant progress made in address-
ing this shortcoming in disease modeling [232] (Figure 5).

ORGANOID AND MICROFLUIDICS-BASED 
DISEASE MODELLING AND DRUG SCREENING 
PLATFORMS

In the context of COVID-19, the development of in 
vitro models of infectious diseases is very important in two 
respects. First, by determining the host-pathogen interac-
tions of a known disease or a never encountered disease, the 
infection mechanisms can be better explained at the molec-
ular and cellular levels. Rapid identification of host-patho-
gen interactions can change the course of epidemics by 
providing a prompt understanding of the pathophysiology 
of infection. Another importance of in vitro disease mod-
els is that they are an excellent tool for high-throughput 
and rapid screening of diagnostic strategies and potential 
therapeutics during pandemics or epidemics [233]. In this 
way, hypothetically developed therapeutics can be screened 
using physiologically relevant in vitro models, meeting the 
critical need for diagnosis and treatment of disease. 

In efforts to model in vitro disease, different cell types 
are gaining attention, including primary cells, enhanced 
cell lines, and more recently induced pluripotent stem cell 
(iPSCs) derivatives [234]. African green monkey renal epi-
thelial cells (Vero E6), especially used as a gold standard 
in viral infection models, have been applied to screen for 
many potential therapeutics in the COVID-19 due to inter-
feron deficiency [235–237]. Besides, various cell lines such 
as Calu3, Huh7, Caco2, 293T, and U251 were found to sup-
port the replication of SARS-CoV-2 and were investigated 
for in vitro model development and therapeutic screening 
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[238,239]. In addition, human airway epithelial (HAE) cells 
used for modeling lung infections, including tracheobron-
chial and alveolar cells, which are one of the first targets of 
human respiratory viruses, are other potential 2D cellular 
systems that can be used to create a disease model of SARS-
CoV-2 [240].

For many years, traditional 2D monolayer static cul-
tures have been an important first step towards gaining an 
understanding of host cell-virus interactions, replication, 
and adaptation mechanisms of infectious disease. It has 
also been used to screen for many antiviral drugs. However, 
2D monolayer static models often fail to mimic tissue and 
organ-level structures and functions in living organisms 
that are central to disease etiology [232]. Due to the lack of 
extracellular matrix, 2D models cannot mimic the in vivo 
conditions encountered by viruses, such as cell-cell inter-
faces and shear forces, apical-basal polarity, and endogenous 
factors, and this affects the accuracy of the results [241]. 
The 3D cell culture approach that is based on in vitro gener-
ation of the natural and complex microenvironment found 
in living organisms is a promising area where the physio-
logical environment in which disease occurs can be better 
represented. For this reason, tissue engineering tools that 
aim to construct complex tissue architectures and organs 
using cell, scaffold, and biosignal molecule components 
have attracted a lot of attention for the creation of effective 
3D cell culture systems with high reliability [230,231]. In 

the specific case of SARS-CoV-2, various tissue engineer-
ing-based systems such as synthetic tissue development on 
scaffolds, organoids, organ-on-chip, and 3D bioprinting 
can be useful as 3D in vitro disease models. 

Organoids are 3D organ models that display similar 
organization of the cell types that the native organ has and 
similar tissue-specific functions. Organoids for SARS-
CoV-2 infection enable researchers to illuminate the patho-
genesis of viral infection on organs, test candidate drugs 
and validate therapeutic strategies [242]. Considering 
that COVID-19 is a respiratory system disease, human 
lung organoids generated from pluripotent stem cells have 
recently been used for high throughput screening of imati-
nib, mycophenolic acid, and quinacrine dihydrochloride as 
inhibitors of SARS-CoV-2 entry and found to be effective 
[243]. Lapatinib treatment also exhibited suppressed viral 
replication on human lung organoids generated from adult 
stem cells obtained from lung biopsies. A study using native 
ECM hydrogels to create 3D models demonstrated that 3D 
models successfully produced by embedding human bron-
chial epithelial cells in Matrigel can be infected with SARS-
CoV-2 [244]. A similar study showed that human lung 3D 
cultures produced from embryonic stem cells cultured on 
Matrigel could be used to evaluate the antiviral effects of 
candidate compounds in SARS-CoV-2 infection [243]. 
In addition, to study the SARS-CoV-2 infection in other 
ACE2-expressing tissues and organs, colon, kidney, liver, 

Figure 5. Tissue engineering strategies in SARS-CoV-2 diagnosis and treatment.



Sigma J Eng Nat Sci, Vol. 41, No. 3, pp. 625−655, June, 2023 639

brain, tonsil, nose, retinal and cardiac organoids are devel-
oped [245,246]. Organ-on-chip technology, on the other 
hand, exploits the advantages of organoids and microfluidic 
systems for better simulation of the in vivo microenviron-
ment and for high-throughput drug testing. 

Si et al. constructed a microfluidic bronchial-airway-
on-a-chip lined by human bronchial-airway epithelium 
and pulmonary endothelium which model human-lung 
responses to infection by potential pandemic respira-
tory viruses including SARS-CoV-2 [247]. Based on 
their broad spectrum anti-viral activity by dynamic fluid 
flow in Airway chips, they tested FDA-approved (for 
other medical indications) drugs such as chloroquine, 
hydroxychloroquine, amodiaquine, toremifene, clomi-
phene, arbidol, verapamil, and amiodarone. Only three of 
these drugs, amodiaquine, toremiphene, and clomiphene, 
effectively prevented viral infection without causing cyto-
toxicity. Hydroxychloroquine, chloroquine, and arbidol, 
which reduced infection in Huh-7 cells, did not affect 
SARS-CoV-2 entry in human Airway Chips and failed 
to demonstrate clinical benefits in human clinical trials, 
demonstrating the clinical relevance of organ-on-chip tech-
nology in terms of drug testing compared to 2D cell culture. 
Multiple organoids located in different compartments that 
are interconnected via microchannels and mimic systemic 
blood circulation, organ proximity, and connectivity can 
also be found on organ-on-chip platforms. [242,248,249]. 
The combination of different tissues plays a key role to 
observe the multi-organ response to drugs, which is par-
ticularly important for SARS-CoV-2 infection, since mul-
tiorgan involvement is apparent in disease prognosis [250].

Zhang et al. proposed a human alveolar chip mimick-
ing the alveolar‐capillary barrier by coculture of the human 
alveolar epithelium, microvascular endothelium, and cir-
culating immune cells under fluidic flow. They noticed 
the immune cell recruitment, endothelium detachment, 
and increased inflammatory cytokines release upon SARS-
CoV-2 infection, suggesting the crucial role of immune cells 
involved in alveolar barrier injury and inflammation. They 
also tested Remdesivir as a potential drug candidate for 
COVID-19 and showed a decrease in viral infection. They 
also applied the drug with immune cells (peripheral blood 
mononuclear cells) via vascular channels in the chip. They 
showed that remdesivir treatment could restore the dam-
age to epithelial layers and endothelial layer to some extent 
indicating the potential role of Remdesivir in suppressing 
SARS‐CoV‐2 replication and decreasing the virus‐induced 
injury of the alveolar‐capillary barrier [251].

In addition, recent remarkable developments are 3D 
bioprinting (3DB) technologies. 3DB which is aiming to 
solve the problems encountered in traditional three-dimen-
tional cell culture and optimize natural tissue formation is 
a rapidly developing field in tissue engineering that aims to 
mimic the complex microarchitecture of tissues. Due to the 
versatility of bioprinting that allows the creation of complex 
tissue architectures, it can serve as an effective tool for the 

development of 3D in vitro models to study the mechanisms 
of SARS-CoV-2 infection in the lung during the pandemic 
as well [230,252]. It has been reported that a 3DB alveolar 
barrier produced with a micro-extrusion bioprinter is orga-
nized into a thin layer and can form multilayered clusters 
between epithelial and endothelial cells incorporated into 
Matrigel™ [253].

Considering terms of the COVID-19 pandemic and 
possible future pandemics, it is clear that all new technolo-
gies in tissue engineering hold promise for understanding 
disease pathophysiology and screening for effective thera-
peutics during pandemics and outbreaks. The effective use 
of tissue engineering tools in pandemics has the potential to 
change the course of epidemics by enabling fast and effec-
tive steps to be taken.

BIOMEDICAL DEVICES AND ARTIFICIAL 
INTELLIGENCE

TELEMEDICINE DURING PANDEMIC

Due to the lack of a specific treatment for SARS-CoV-2, 
preventing the spread of the virus has been the main pur-
pose of the fight against COVID-19. This exceptional situ-
ation has challenged the health system in the whole world 
and revealed the need for modification in health care deliv-
ery [254]. The concept of telemedicine, the use of which 
began in the 1970s, consists of the provision of remote 
health care [255]. Telemedicine has become increasingly 
popular during the pandemic as a way to provide medi-
cal care remotely. This technology allows patients to con-
sult with healthcare providers via videoconference, phone, 
or other forms of electronic communication. One of the 
main advantages of telemedicine is that it allows patients to 
receive medical care without having to leave their homes, 
which can be especially beneficial for those at high risk 
such as the elderly or immunocompromised. Telemedicine 
can also be used to provide mental health support to peo-
ple who may be struggling with anxiety or depression as 
a result of the pandemic. Providing virtual counseling ses-
sions can help to ensure that people have access to the sup-
port they need during this difficult time. Besides, it can also 
help to reduce healthcare costs. Traditional in-person med-
ical appointments can be expensive and time-consuming, 
but telemedicine can be a more convenient and cost-effec-
tive alternative.

 Although 1% of healthcare recipients could benefit 
from telemedicine services in the pre-pandemic period, 
a prompt and significant increase took place during the 
pandemic to protect individuals as well as physicians 
[256,257]. Telemedicine has been used as a triage method 
for COVID-19 and a way of managing all other diseases. 
Some disciplines such as internal medicine, oncology, pul-
monology, cardiology, psychiatry, neurology, surgery, and 
dermatology used telemedicine for non-COVID-19 cases` 
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chronic complications [258]. On the other side, there are 
also some limitations to telemedicine. There may be certain 
conditions in which diagnosis and treatment without an 
in-person examination would be difficult or even impos-
sible. Additionally, some people may not have access to 
the technology or internet connection needed to use tele-
medicine services. Despite these limitations, telemedicine 
has proven to be an effective way to provide medical care 
during the COVID-19 pandemic. As the world continues 
to grapple with the virus, telemedicine is likely to become 
an increasingly important tool for healthcare providers and 
patients alike.

BIOMEDICAL EQUIPMENTS

There had been several R&D developments for electro-
mechanical devices and medical consumables during the 
COVID-19 pandemic. In Turkey, the Ministry of Health in 
cooperation with the Ministry of Industry and Technology 
including with the private sector has initiated domestic 
respiratory equipment production. This domestic respi-
rator was first used in city hospitals and successful results 
were obtained. At the end of May 2020, more than 1000 
domestic respirators were exported all around the globe 
[259].

In India, Mahindra & Mahindra, an automobile com-
pany, teamed up with Skanray Technologies (Skan-Ray) a 
medical equipment retail manufacturer, started to design 
and manufacture a new ventilator that is easy to use and 
easy to produce. Design, development, assembly, prototype 
testing, transportation, and logistics were carried out by 
these companies. The price of the new ventilator is 7500 
INR which makes it 99.25% cheaper than the cost of an 
imported ventilator [260].

In the USA, General Motors came together with Ventec 
Life System, an American medical device company that 
started to produce ventilators. The Ventec-designed venti-
lators are fabricated at General Motors factories. 30000 ven-
tilators were purchased by the US government [260].

In Spain, Seat, an automotive manufacturer company, 
took action to manufacture emergency ventilators at its 
Martorell facilities. These devices were utilized by the 
Spanish Medicines and Medical Devices Agency for clinical 
trials [261].

In Canada, The Milan Mechanical Ventilator has played 
an important role during the COVID-19 pandemic. It has 
low cost, no moving mechanical parts, requires compressed 
oxygen, and a medical air supply to operate. It performed 
well in stability tests when thoroughly tested against ISO 
standards. Emergency use permission granted from the 
FDA for use in hospitals. In addition, temporary authori-
zation granted by Canada Medical Device Authorization. 
Then, with these, supporting documents, mass production 
provided and a serious amount of export made to other 
countries [262].

The CDC guideline highlight the precautions to be 
taken regarding bioaerosols contaminated from oral micro-
flora. The risk of viral contamination may be lower if the 
oral viral load is decreased. Personal protection barriers, 
preprocedural mouth rinses, rubber dams, saliva ejectors, 
high volume evacuation systems, HEPA filters, UV light, 
and ozonization are the key infection control methods 
that could be preferred by health professionals [263]. For 
instance, an aerosol protection box could be used to protect 
dental staff from contaminated aerosols generated during 
dental procedures [264]. 

BIOMEDICAL DEVICES AND TEST KITS FOR 
DIAGNOSIS

During the COVID-19 pandemic, the development of 
point-of-care (POC) devices has increased to early detect 
and control the spread of the disease. Although the con-
ventional methods including RT-PCR and loop mediated 
isothermal amplification (LAMP) are reliable and sensitive 
for COVID-19 diagnosis, they either require specialized 
personnel and bulky laboratory instruments and lack por-
tability [265]. 

In China, the birthplace of COVID-19, there had been 
several studies for fast and reliable test kits. A test kit 
named “SARS-CoV-2 Antibody test” produced by Biologix 
Corporation was evaluated on 596 clinical cases. As a result, 
361 tests were confirmed as COVID-19 cases and 235 were 
excluded. The sensitivity of this test kit was found as 86.43%. 
The specificity was 99.57%, and the total consistency 
appeared as 91.61% [266]. The test kit named “Diagnostic 
Kit for IgM/IgG Antibody to Coronavirus (SARS-CoV-2)” 
developed by Zhuhai Livzon Diagnostic Inc. was evaluated 
with 644 samples. As a result, 286 COVID-19 cases were 
clinically diagnosed, and 358 cases were clinically excluded. 
The sensitivity of the test kit has appeared as 90.6%. The 
specificity was 99.2% and the overall agreement appeared 
to be 95.3% [266].

In the evaluation report of the test kit named “WONDFO® 
One Step COVID-19 (SARS-CoV-2 Antibody) Test” pro-
duced by Guangzhou Wondfo Biotech, 38 PCR-positive, 
and 10 PCR-negative results were reported. As a result of 
the evaluation, the positive rate of this diagnostic kit in 
the performance report was determined as 100%, the neg-
ative rate as 90%, and the total compliance rate appeared 
as 97.92% [266]. 208 subjects were evaluated for “Eugene® 
SARS-CoV2 (COVID-19) IgG/IgM Rapid Test” produced 
by Shanghai Eugene Biotech. Of these subjects, 55 resulted 
as PCR-positive, and 153 resulted as PCR-negative. Finally, 
the sensitivity was determined as 96.4%, the specificity as 
98.7%, and the accuracy was determined as 98.1% [266]. 
On the other hand, in the evaluation report of the test kit 
called “Standard™ Q COVID-19 IgM/IgG Duo Test” pro-
duced by the SD Biosensor, 40 samples were evaluated. Of 
these, 24 of them were PCR-positive and 16 were PCR-
negative. As a result here, the specificity appeared to be 
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100%. Results 7 days after the first PCR, cutoff values were 
obtained as 91.7% for IgM and 79.2% for IgG. The cutoff 
for IgM was 100% just nine days after the first PCR. The 
initial PCR value for IgG after 12 days was 100% [266]. 
Finally, “VivaDiag™ COVID-19 IgM/IgG Rapid test” pro-
duced by the manufacturer of VivaChek Laboratories have 
analyzed over three separate analyzes via 80 positive cases, 
70 positive cases, and 50 negative cases. The total positive 
coincidence rate of 80 positive cases was 81.25%. The total 
positive coincidence rate of 70 positive cases was 97.1%. 
The total negative coincidence rate of 50 negative cases was 
100% [266].

In a recent report, Lomae et al. developed a smart-
phone-assisted paper-based electrochemical (ePAD) 
biosensor to detect SARS-CoV-2 [267]. The ePAD was 
fabricated via the screen-printing method and modified 
with pyrrolidinyl peptide nucleic acid (acpcPNA) via the 
formation of an aldehyde group based on the periodate oxi-
dation of OH- of cellulose. Then, the acpcPNA probe was 
immobilized on the electrode surface due to the generation 
of covalent attachment. Finally, the hybridization occurred 
between the target complementary DNA (cDNA) and acp-
cPNA probe as the biorecognition element in the presence 
of [Fe (CN)6]3−/4− as the redox active indicator. Under 
optimal conditions, the developed biosensor exhibited a 
linear range from 0.1 to 200 nM and a limit of detection 
(LOD) of 1.0 pM using the amperometric method. In addi-
tion, the biosensor was validated for the detection of SARS-
CoV-2 in ten nasopharyngeal swab samples including seven 
of SARS-CoV-2 positive and three of SARS-CoV-2 negative 
with a 100% agreement result with RT-PCR. The biosensor 
has advantages that it offers rapid, sensitive, disposable, and 
POC detection of SARS-CoV-2 nucleocapsid N gene. 

Klark et al. developed an electrochemical capillary 
driven immunoassay (eCaDI) for POC detection of SARS-
CoV-2 N protein [268]. At first, the device was fabricated 
using the screen-printing method on polyethylene tere-
phthalate (PET). The sequential delivery and precise flow 
control of reagents and washing steps were achieved using 
adhesive tapes, allowing an automated operation by the 
end-user. The working electrode was modified with a sand-
wich strategy via incubation of aged casein blocker, IgG 
antibodies against SARS-CoV-2 N proteins, and conjugated 
secondary antibody. Finally, 3,3',5,5'-tetramethylbenzidine 
(TMB) was introduced to the electrode surface, followed 
by two min chronoamperometry measurement to detect 
SARS-CoV-2. The eCaDI showed a LOD of 68 equiv PFU/
ml. The biosensor demonstrated stability over seven weeks. 
The applicability of the eCaDI was successfully shown in 
the presence of influenza A and Sindbis virus. The devel-
oped biosensor has advantages that it is low-cost, sensitive, 
short turnover time compared to ELISA, prevents the steps 
to be employed by trained personnel, and can detect nine 
different SARS-CoV-2 variants including omicron at the 
POC.

THE USE OF ARTIFICIAL INTELLIGENCE IN MED-
ICAL DEVICES

Artificial intelligence (AI) is the concept of machines 
performing tasks that require human intelligence. Machine 
learning (ML) is a technique to develop AI systems, in 
which, the algorithms are trained on a provided data 
set to calculate the desired output [269]. Systems can be 
developed for tasks such as classification, regression, or 
clustering with various machine learning techniques like 
Deep Learning (DL), Support Vector Machines (SVMs), 
Convolutional Neural Networks (CNNs), or Generative 
Adversarial Networks (GANs) (Figure 6) [269–271]. With 
the onset of the COVID-19 pandemic, much data have 
been obtained on the SARS-CoV-2 virus, the symptoms 
and pathophysiology of the infection, and the systemic 
long-term effects on individuals after infection. Processing 
these data and using it for various purposes in integration 
with artificial intelligence technologies has emerged as the 
state-of-art approach. AI systems have supported health-
care professionals in various forms in the fight against 
COVID-19 [272]. These applications can be evaluated 
under five sections:

Diagnosis and screening: Several radiological, molec-
ular, and serological technologies are used in the diagnosis 
of COVID-19. AI tools can provide help to evaluate patient 
data from such devices quickly and effectively. Wang et al. 
developed a system for screening the disease using com-
puted tomography (CT) devices. The authors adopted the 
GoogleNet Inception v3 CNN as a predefined model and 
the system reached a total accuracy of 89.5% on internal 
validation and 79.3% on external testing dataset [273]. 
Ahsan et al. compared the performance of six different 
DL approaches (VGG16, InceptionResNetV2, ResNet50, 
MobileNetV2, ResNet101, and VGG19) to detect SARS-
CoV-2 infection from chest X-ray (CXR) images. For the 
binary models (COVID-19 and normal), VGG16 and 
MobileNetV2 achieved accuracy of up to 100%, on both 
small balanced and larger imbalanced dataset. Further, 
multi-class VGG16 models (COVID-19, Pneumonia, 
and normal) reached an accuracy of 91% [274]. Low et 
al. emphasized the importance of the data produced with 
standard operating procedures to ensure adequate train-
ing of the models for identification of COVID-19 on CT 
and CXR images. In their review article, the data from 
the open-source websites were reported to be insufficient 
[269]. Zhao and Bell reported that the DL applications in 
lung ultrasound (LUS) imaging of COVID-19 patients are 
promising, but limited by the operator factor, lack of a large 
balanced data set and explainability of the system results 
[275]. Combining multi-modality data such as CT, CXR, 
and LUS is another approach for developing such systems 
[276]. Deulofeu et al. developed two ML classifier systems 
for the diagnostic analysis of human nasopharyngeal (NP) 
samples by matrix assisted laser desorption/ionization 
time-of-flight mass spectrometry (MALDI-TOF MS) using 
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Extreme Gradient Boosting Trees (XBOOST), and SVMs 
techniques. The authors applied 10-fold cross-validation 
method on both models and the binary classifier models 
achieved over 90% accuracy [270]. Rohaim et al. proposed 
DL-CNNs to enhance the results of the reverse-transcribed 
loop-mediated isothermal amplification (LAMP) assay. 
The accuracy of diagnosis is improved with DL model 
(98%) when compared to the sum of the absolute differ-
ence threshold value method (81.25%) [277]. Schuller et al. 
reviewed the potential of computational speech and sound 
analysis in the crisis of pandemic, and potential use-cases 
are listed as risk assessment, diagnosis, monitoring the 
spread, monitoring of social distancing and effects, moni-
toring of treatment and recovery, and generation of speech 
and sound utilizing GANs. The authors also reported that 
the time, collecting patient data, model sharing, real-world 
audio processing, green processing, trustability of results 
and ethics are the main challenges [271].

Drug discovery and vaccine design: Lv et al. reviewed 
the AI/ML-based methods in the field of drug and vaccine 
development. The authors classified the model’s architecture 
as network-based, expression-based, and integrated dock-
ing simulation algorithms, and data quality and algorithm 
design were reported as challenges in the field [278]. Russo 
et al. criticized the role of emerging technologies in vaccine 
discovery. The authors reported that Silico Trials (IST), a 
new class of computational methods can be employed for 
faster vaccine development and evaluation. Combination 
of several technologies was suggested as another solution, 
however, this strategy is not yet be effectively adopted, as 
stated in the expert opinion section [279]. Novel drug and 
vaccine design can be performed using GANs [280]. Target 
identification and validation, drug design and optimiza-
tion, lead optimization, and preclinical and clinical devel-
opment are all about the use of artificial intelligence by 
Wang et al [281] The findings demonstrated that AI might 

significantly improve medication development by decreas-
ing development times and enhancing quality control. Data 
quality, algorithmic design, and regulatory approval were 
also mentioned as problems and limitations of AI in drug 
discovery and development.

Contact tracing: Digital contact tracing applica-
tions have been reported to be used in 36 countries by 
Lalmuanawma et al., demonstrating their significance as 
a public health tool for halting the spread of COVID-19. 
These programs use Bluetooth, GPS, or GSM to gather 
the information that may be evaluated with AI and ML. 
Analyzing these data can be done in a centralized fash-
ion, a decentralized fashion, or a hybrid fashion [282]. 
However, privacy concerns have been brought to light by 
the extensive usage of digital contact tracing. Bengio et al. 
[283] addressed these concerns by reporting on the signif-
icance of maintaining data privacy in digital contact track-
ing. The authors recommend using pseudonymization, 
de-identification, or data aggregation to address privacy 
issues. This would protect individuals’ privacy while also 
facilitating disease surveillance and management. Evidence 
for the efficacy of digital contact tracking in preventing the 
transmission of SARS-CoV-2 is provided by Ferretti et al. 
The authors utilized mathematical modeling to speculate 
on how stopping the spread of disease by digital contact 
tracing and other public health measures would affect the 
overall rate of transmission [284] Importantly, the authors 
show that digital contact tracing is useful for preventing 
the transmission of SARS-CoV-2, making this an essential 
outcome of the study. The authors use mathematical mod-
eling to quantify the influence of digital contact tracing 
and other public health initiatives on disease transmission, 
indicating that digital contact tracing can play an import-
ant role in containing the pandemic. In essence, digital 
contact tracing applications are a vital tool for stopping the 
spread of COVID-19. However, precautions must be taken 

Figure 6. Use of AI methods in Combat to COVID-19.
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to guarantee that sensitive personal information is safe-
guarded and privacy is maintained when these applications 
are used [283,285].

Medical devices and equipment: Tracking COVID-19 
patients’ vital indicators with the help of wireless wearable 
sensors and ML analysis is becoming increasingly criti-
cal. Sensors and cutting-edge data analysis methods are 
brought together in this cutting-edge technology to keep 
tabs on patients’ health and spot any changes [285]. As an 
example, Wintjens et al. did a study where they employed 
ML-classifier systems to determine who was COVID-
19 positive and who was not. To do this, scientists used a 
device called an electronic nose to analyze the air for vola-
tile organic chemicals. A negative prediction value of 0.92 
was shown by the ML model, which was built on artificial 
neural network architecture [286]. Using DL-CNNs designs 
like VGG16, VGG19, ResNet101, NASNet, DenseNet121, 
MobileNet, Xception, EfficientNet, and InceptionV3, 
Kogilavani et al. created a non-contact sensing system to 
detect COVID-19 patients. The system used ultrasound and 
RFID-based sensor technologies to keep an eye on breath-
ing issues, and the VGG16 model had an accuracy of 99.76 
percent [285]. Research in this paper centers on a novel 
approach to remote monitoring of patients with COVID-
19: the combination of wearable sensors and machine 
learning. Patients’ vital signs can be monitored with the 
help of the COVID-19 decompensation index (CDI) model 
shown here, which makes use of gradient boosted decision 
trees. This research demonstrates the promise of combin-
ing wearable sensors with machine learning for remote 
monitoring of COVID-19 patients, and it also identifies the 
obstacles that must be overcome to make this technology 
truly useful. The authors draw the conclusion that remote 
monitoring based on machine learning and utilizing wear-
able sensors can be an instrumental tool in the early detec-
tion of COVID-19 symptoms and in halting the spread of 
the disease. The results of the study lend credence to the 
hypothesis that integrating wearable sensors with machine 
learning algorithms can improve the quality of health mon-
itoring for patients with COVID-19 [287].These research 
efforts show the promise of combining ML analysis with 
wireless wearable sensors to monitor critical metrics in 
COVID-19 patients and provide better, more immediate 
data on their health. Potentially, this technique could be 
crucial in the fight against COVID-19 and in enhancing 
patient outcomes.

Data analysis and surveillance: Kolozsvári et al. pro-
posed an ensemble-based system to predict the daily 
number of newly diagnosed infections in six countries 
and forecast the first and second pandemic waves. Two 
Recurrent Neural Networks (RNNs) models were trained 
on publicly available data and extra features were added 
with transfer learning. The root mean squared logarith-
mic errors were reported to be in the range of 0.057 and 
0.513 for the first, and 0.064 and 0.528 for the second model 
[288]. Patel et al. developed a system for predicting the 

disease severity based on socio-demographic, clinical, and 
blood panel profile data. Performance of several ML classi-
fiers are compared (random forest, multilayer perceptron, 
SVMs, gradient boosting, extra tree classifier, adaboost) 
and the random forest algorithm reached AUC value of 
0.80 for predicting intensive care need and 0.82 for predict-
ing the need for mechanical ventilation. Models developed 
on quantitative data are reported to be less prone to errors 
and subjectivity [289].

Fatima et al. utilized Natural Language Processing 
(NLP) and DL methods to detect the rumors in the news 
and the tweets. In total, 9200 comments from Google and 
34779 tweets were analyzed in terms of veracity, stance, 
and sentiment, and the accuracy of the proposed mod-
els were in the range of 84.97% and 99.97% [290]. Flores 
and Young released an article on ethical considerations for 
applying machine learning methods to social media data. 
The authors reported that the researchers should adhere to 
ethical principles of respect for persons, beneficence, and 
justice, to ensure scientific progress with public safety and 
confidence [291].

CONCLUSION

To combat the coronavirus disease 2019 (COVID-19) 
pandemic, numerous scientific groups from all over the 
world have advanced diagnostic tests, rapid diagnostic 
kits, vaccinations for immunization, and the repurpos-
ing of pharmaceuticals for therapy. Scientific communi-
ties’ suggestions for methods of diagnosis, therapy, and 
immunization rely on the knowledge gathered by multi-
disciplinary sciences in health biotechnology. So much so 
that the development of novel approaches in numerous 
fields, including diagnosis, treatment, translational med-
icine, virology, microbiology, immunology, functional 
nano- and bio-materials, bioinformatics, molecular biol-
ogy, genetics, tissue engineering, biomedical devices, and 
artificial intelligence technologies, has been driven by 
the pandemic, which is urgently prioritized around the 
world. The enthusiastic developments in all these disci-
plines show what kind of challenges the world will face 
in case of the pandemic that may occur in the future and 
how strong the scientific world’s hand is in tackling these 
urgent health issues. On the other hand, with its devastat-
ing results, this pandemic has also revealed the fact that 
the multidisciplinary approaches of the scientific world 
should be continued comprehensively.
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