
Physics Letters B 744 (2015) 339–346
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Measurement of yCP in D0–D0 oscillation using quantum correlations 

in e+e− → D0D0 at 
√

s = 3.773 GeV

BESIII Collaboration 

M. Ablikim a, M.N. Achasov h,1, X.C. Ai a, O. Albayrak d, M. Albrecht c, D.J. Ambrose au, 
A. Amoroso ay,ba, F.F. An a, Q. An av, J.Z. Bai a, R. Baldini Ferroli s, Y. Ban af, D.W. Bennett r, 
J.V. Bennett d, M. Bertani s, D. Bettoni u, J.M. Bian at, F. Bianchi ay,ba, E. Boger x,8, 
O. Bondarenko z, I. Boyko x, R.A. Briere d, H. Cai bc, X. Cai a, O. Cakir ao,2, A. Calcaterra s, 
G.F. Cao a, S.A. Cetin ap, J.F. Chang a, G. Chelkov x,3, G. Chen a, H.S. Chen a, H.Y. Chen b, 
J.C. Chen a, M.L. Chen a, S.J. Chen ad, X. Chen a, X.R. Chen aa, Y.B. Chen a, H.P. Cheng p, 
X.K. Chu af, G. Cibinetto u, D. Cronin-Hennessy at, H.L. Dai a, J.P. Dai ai, A. Dbeyssi m, 
D. Dedovich x, Z.Y. Deng a, A. Denig w, I. Denysenko x, M. Destefanis ay,ba, F. De Mori ay,ba, 
Y. Ding ab, C. Dong ae, J. Dong a, L.Y. Dong a, M.Y. Dong a, S.X. Du be, P.F. Duan a, J.Z. Fan an, 
J. Fang a, S.S. Fang a, X. Fang av, Y. Fang a, L. Fava az,ba, F. Feldbauer w, G. Felici s, C.Q. Feng av, 
E. Fioravanti u, M. Fritsch m,w, C.D. Fu a, Q. Gao a, Y. Gao an, Z. Gao av, I. Garzia u, 
K. Goetzen i, W.X. Gong a, W. Gradl w, M. Greco ay,ba, M.H. Gu a, Y.T. Gu k, Y.H. Guan a,∗, 
A.Q. Guo a, L.B. Guo ac, T. Guo ac, Y. Guo a, Y.P. Guo w, Z. Haddadi z, A. Hafner w, S. Han bc, 
Y.L. Han a, F.A. Harris as, K.L. He a, Z.Y. He ae, T. Held c, Y.K. Heng a, Z.L. Hou a, C. Hu ac, 
H.M. Hu a, J.F. Hu ay, T. Hu a, Y. Hu a, G.M. Huang e, G.S. Huang av, H.P. Huang bc, 
J.S. Huang n, X.T. Huang ah, Y. Huang ad, T. Hussain ax, Q. Ji a, Q.P. Ji ae, X.B. Ji a, X.L. Ji a, 
L.L. Jiang a, L.W. Jiang bc, X.S. Jiang a, J.B. Jiao ah, Z. Jiao p, D.P. Jin a, S. Jin a, T. Johansson bb, 
A. Julin at, N. Kalantar-Nayestanaki z, X.L. Kang a, X.S. Kang ae, M. Kavatsyuk z, B.C. Ke d, 
R. Kliemt m, B. Kloss w, O.B. Kolcu ap,4, B. Kopf c, M. Kornicer as, W. Kuehn y, A. Kupsc bb, 
W. Lai a, J.S. Lange y, M. Lara r, P. Larin m, C.H. Li a, Cheng Li av, D.M. Li be, F. Li a, G. Li a, 
H.B. Li a, J.C. Li a, Jin Li ag, K. Li ah, K. Li l, P.R. Li ar, T. Li ah, W.D. Li a, W.G. Li a, X.L. Li ah, 
X.M. Li k, X.N. Li a, X.Q. Li ae, Z.B. Li am, H. Liang av, Y.F. Liang ak, Y.T. Liang y, G.R. Liao j, 
D.X. Lin m, B.J. Liu a, C.X. Liu a, F.H. Liu aj, Fang Liu a, Feng Liu e, H.B. Liu k, H.H. Liu a, 
H.H. Liu o, H.M. Liu a, J. Liu a, J.P. Liu bc, J.Y. Liu a, K. Liu an, K.Y. Liu ab, L.D. Liu af, P.L. Liu a, 
Q. Liu ar, S.B. Liu av, X. Liu aa, X.X. Liu ar, Y.B. Liu ae, Z.A. Liu a, Zhiqiang Liu a, Zhiqing Liu w, 
H. Loehner z, X.C. Lou a,5, H.J. Lu p, J.G. Lu a, R.Q. Lu q, Y. Lu a, Y.P. Lu a, C.L. Luo ac, 
M.X. Luo bd, T. Luo as, X.L. Luo a, M. Lv a, X.R. Lyu ar,∗, F.C. Ma ab, H.L. Ma a, L.L. Ma ah, 
Q.M. Ma a, S. Ma a, T. Ma a, X.N. Ma ae, X.Y. Ma a, F.E. Maas m, M. Maggiora ay,ba, 
Q.A. Malik ax, Y.J. Mao af, Z.P. Mao a, S. Marcello ay,ba, J.G. Messchendorp z, J. Min a, T.J. Min a, 
R.E. Mitchell r, X.H. Mo a, Y.J. Mo e, C. Morales Morales m, K. Moriya r, N.Yu. Muchnoi h,1, 
H. Muramatsu at, Y. Nefedov x, F. Nerling m, I.B. Nikolaev h,1, Z. Ning a, S. Nisar g, S.L. Niu a, 
X.Y. Niu a, S.L. Olsen ag, Q. Ouyang a, S. Pacetti t, P. Patteri s, M. Pelizaeus c, H.P. Peng av, 
K. Peters i, J.L. Ping ac, R.G. Ping a, R. Poling at, Y.N. Pu q, M. Qi ad, S. Qian a, C.F. Qiao ar, 
L.Q. Qin ah, N. Qin bc, X.S. Qin a, Y. Qin af, Z.H. Qin a, J.F. Qiu a, K.H. Rashid ax, C.F. Redmer w, 
H.L. Ren q, M. Ripka w, G. Rong a, X.D. Ruan k, V. Santoro u, A. Sarantsev x,6, M. Savrié v, 
K. Schoenning bb, S. Schumann w, W. Shan af, M. Shao av, C.P. Shen b, P.X. Shen ae, 
http://dx.doi.org/10.1016/j.physletb.2015.04.008
0370-2693/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.

http://dx.doi.org/10.1016/j.physletb.2015.04.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://dx.doi.org/10.1016/j.physletb.2015.04.008
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2015.04.008&domain=pdf


340 BESIII Collaboration / Physics Letters B 744 (2015) 339–346
X.Y. Shen a, H.Y. Sheng a, M.R. Shepherd r, W.M. Song a, X.Y. Song a, S. Sosio ay,ba, 
S. Spataro ay,ba, B. Spruck y, G.X. Sun a, J.F. Sun n, S.S. Sun a, Y.J. Sun av, Y.Z. Sun a, Z.J. Sun a, 
Z.T. Sun r, C.J. Tang ak, X. Tang a, I. Tapan aq, E.H. Thorndike au, M. Tiemens z, D. Toth at, 
M. Ullrich y, I. Uman ap, G.S. Varner as, B. Wang ae, B.L. Wang ar, D. Wang af, D.Y. Wang af, 
K. Wang a, L.L. Wang a, L.S. Wang a, M. Wang ah, P. Wang a, P.L. Wang a, Q.J. Wang a, 
S.G. Wang af, W. Wang a, X.F. Wang an, Y.D. Wang s, Y.F. Wang a, Y.Q. Wang w, Z. Wang a, 
Z.G. Wang a, Z.H. Wang av, Z.Y. Wang a, T. Weber w, D.H. Wei j, J.B. Wei af, P. Weidenkaff w, 
S.P. Wen a, U. Wiedner c, M. Wolke bb, L.H. Wu a, Z. Wu a, L.G. Xia an, Y. Xia q, D. Xiao a, 
Z.J. Xiao ac, Y.G. Xie a, G.F. Xu a, L. Xu a, Q.J. Xu l, Q.N. Xu ar, X.P. Xu al, L. Yan av, W.B. Yan av, 
W.C. Yan av, Y.H. Yan q, H.X. Yang a, L. Yang bc, Y. Yang e, Y.X. Yang j, H. Ye a, M. Ye a, 
M.H. Ye f, J.H. Yin a, B.X. Yu a, C.X. Yu ae, H.W. Yu af, J.S. Yu aa, C.Z. Yuan a, W.L. Yuan ad, 
Y. Yuan a, A. Yuncu ap,7, A.A. Zafar ax, A. Zallo s, Y. Zeng q, B.X. Zhang a, B.Y. Zhang a, 
C. Zhang ad, C.C. Zhang a, D.H. Zhang a, H.H. Zhang am, H.Y. Zhang a, J.J. Zhang a, J.L. Zhang a, 
J.Q. Zhang a, J.W. Zhang a, J.Y. Zhang a, J.Z. Zhang a, K. Zhang a, L. Zhang a, S.H. Zhang a, 
X.Y. Zhang ah, Y. Zhang a, Y.H. Zhang a, Y.T. Zhang av, Z.H. Zhang e, Z.P. Zhang av, 
Z.Y. Zhang bc, G. Zhao a, J.W. Zhao a, J.Y. Zhao a, J.Z. Zhao a, Lei Zhao av, Ling Zhao a, 
M.G. Zhao ae, Q. Zhao a, Q.W. Zhao a, S.J. Zhao be, T.C. Zhao a, Y.B. Zhao a, Z.G. Zhao av, 
A. Zhemchugov x,8, B. Zheng aw, J.P. Zheng a, W.J. Zheng ah, Y.H. Zheng ar, B. Zhong ac, 
L. Zhou a, Li Zhou ae, X. Zhou bc, X.K. Zhou av, X.R. Zhou av, X.Y. Zhou a, K. Zhu a, K.J. Zhu a, 
S. Zhu a, X.L. Zhu an, Y.C. Zhu av, Y.S. Zhu a, Z.A. Zhu a, J. Zhuang a, B.S. Zou a, J.H. Zou a

a Institute of High Energy Physics, Beijing 100049, People’s Republic of China
b Beihang University, Beijing 100191, People’s Republic of China
c Bochum Ruhr-University, D-44780 Bochum, Germany
d Carnegie Mellon University, Pittsburgh, PA 15213, USA
e Central China Normal University, Wuhan 430079, People’s Republic of China
f China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
g COMSATS Institute of Information Technology, Lahore, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
h G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
i GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
j Guangxi Normal University, Guilin 541004, People’s Republic of China
k GuangXi University, Nanning 530004, People’s Republic of China
l Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
m Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
n Henan Normal University, Xinxiang 453007, People’s Republic of China
o Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
p Huangshan College, Huangshan 245000, People’s Republic of China
q Hunan University, Changsha 410082, People’s Republic of China
r Indiana University, Bloomington, IN 47405, USA
s INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy
t INFN and University of Perugia, I-06100, Perugia, Italy
u INFN Sezione di Ferrara, I-44122, Ferrara, Italy
v University of Ferrara, I-44122, Ferrara, Italy
w Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
x Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
y Justus Liebig University Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
z KVI-CART, University of Groningen, NL-9747 AA Groningen, The Netherlands
aa Lanzhou University, Lanzhou 730000, People’s Republic of China
ab Liaoning University, Shenyang 110036, People’s Republic of China
ac Nanjing Normal University, Nanjing 210023, People’s Republic of China
ad Nanjing University, Nanjing 210093, People’s Republic of China
ae Nankai University, Tianjin 300071, People’s Republic of China
af Peking University, Beijing 100871, People’s Republic of China
ag Seoul National University, Seoul, 151-747 Republic of Korea
ah Shandong University, Jinan 250100, People’s Republic of China
ai Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
aj Shanxi University, Taiyuan 030006, People’s Republic of China
ak Sichuan University, Chengdu 610064, People’s Republic of China
al Soochow University, Suzhou 215006, People’s Republic of China
am Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
an Tsinghua University, Beijing 100084, People’s Republic of China
ao Istanbul Aydin University, 34295 Sefakoy, Istanbul, Turkey
ap Dogus University, 34722 Istanbul, Turkey
aq Uludag University, 16059 Bursa, Turkey
ar University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
as University of Hawaii, Honolulu, HI 96822, USA
at University of Minnesota, Minneapolis, MN 55455, USA
au University of Rochester, Rochester, NY 14627, USA
av University of Science and Technology of China, Hefei 230026, People’s Republic of China



BESIII Collaboration / Physics Letters B 744 (2015) 339–346 341
aw University of South China, Hengyang 421001, People’s Republic of China
ax University of the Punjab, Lahore-54590, Pakistan
ay University of Turin, I-10125, Turin, Italy
az University of Eastern Piedmont, I-15121, Alessandria, Italy
ba INFN, I-10125, Turin, Italy
bb Uppsala University, Box 516, SE-75120 Uppsala, Sweden
bc Wuhan University, Wuhan 430072, People’s Republic of China
bd Zhejiang University, Hangzhou 310027, People’s Republic of China
be Zhengzhou University, Zhengzhou 450001, People’s Republic of China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 January 2015
Received in revised form 19 March 2015
Accepted 6 April 2015
Available online 9 April 2015
Editor: L. Rolandi

Keywords:
BESIII
D0–D0 oscillation
yCP

Quantum correlation

We report a measurement of the parameter yCP in D0–D0 oscillations performed by taking advantage of 
quantum coherence between pairs of D0 D0 mesons produced in e+e− annihilations near threshold. In 
this work, doubly-tagged D0 D0 events, where one D decays to a CP eigenstate and the other D decays 
in a semileptonic mode, are reconstructed using a data sample of 2.92 fb−1 collected with the BESIII 
detector at the center-of-mass energy of 

√
s = 3.773 GeV. We obtain yCP = (−2.0 ± 1.3 ± 0.7)%, where 

the first uncertainty is statistical and the second is systematic. This result is compatible with the current 
world average.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

1.1. Charm oscillation

It is well known that oscillations between meson and antime-
son, also called mixing, can occur when the flavor eigenstates 
differ from the physical mass eigenstates. These effects provide 
a mechanism whereby interference in the transition amplitudes 
of mesons and antimesons may occur. They may also allow for 
manifestation of CP violation (CPV) in the underlying dynamics 
[1,2]. Oscillations in the K 0–K 0 [3], B0–B0 [4] and B0

s –B0
s [5]

systems are established; their oscillation rates are well-measured 
and consistent with predictions from the Standard Model (SM) [6]. 
After an accumulation of strong evidence from a variety of exper-
iments [7–9], D0–D0 oscillations were recently firmly established 
by LHCb [10]. The results were soon confirmed by CDF [11] and 
Belle [12].

The oscillations are conventionally characterized by two dimen-
sionless parameters x = �m/� and y = ��/2�, where �m and 
�� are the mass and width differences between the two mass 
eigenstates and � is the average decay width of those eigenstates. 
The mass eigenstates can be written as |D1,2〉 = p|D0〉 ± q|D0〉, 
where p and q are complex parameters and φ = arg(q/p) is a 
CP-violating phase. Using the phase convention CP|D0〉 = +|D0〉, 
the CP eigenstates of the D meson can be written as

|DCP+〉 ≡ |D0〉 + |D0〉√
2

, |DCP−〉 ≡ |D0〉 − |D0〉√
2

. (1)
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The difference in the effective lifetime between D decays to CP
eigenstates and flavor eigenstates can be parameterized by yCP . In 
the absence of direct CPV , but allowing for small indirect CPV , we 
have [13]

yCP = 1

2

[
y cos φ

(∣∣∣∣ q

p

∣∣∣∣ +
∣∣∣∣ p

q

∣∣∣∣
)

− x sin φ

(∣∣∣∣ q

p

∣∣∣∣ −
∣∣∣∣ p

q

∣∣∣∣
)]

. (2)

In the absence of CPV , one has |p/q| = 1 and φ = 0, leading to 
yCP = y.

Although D0–D0 mixing from short-distance physics is sup-
pressed by the CKM matrix [14,15] and the GIM mechanism [16], 
sizeable charm mixing can arise from long-distance processes and 
new physics [1,17]. Current experimental precision [18] is not suf-
ficient to conclude whether physics beyond the SM is involved, and 
further constraints are needed. So far, the most precise determina-
tion of the size of the mixing has been obtained by measuring the 
time-dependent decay rate in the D → K ±π∓ channel [10–12]. 
However, the resulting information on the mixing parameters x
and y is highly correlated. It is important to access the mixing 
parameters x and y directly to provide complementary constraints.

In this analysis, we use a time-integrated method to extract yCP , 
as proposed in the references [19–22], which uses threshold D0 D0

pair production in e+e− → γ ∗ → D0 D0. In this process, the D0 D0

pair is in a state of definite C = −1, such that the two D mesons 
necessarily have opposite CP eigenvalues. The method utilizes the 
semileptonic decays of D meson and hence, avoids the complica-
tions from hadronic effects in D decays, thus provides a clean and 
unique way to probe the D0–D0 oscillation.

1.2. Formalism

In the semileptonic decays of neutral D mesons (denoted as 
D → l),9 the partial decay width is only sensitive to flavor content 
and does not depend on the CP eigenvalue of the parent D meson. 
However, the total decay width of the DCP± does depend on its CP
eigenvalue: �CP± = �(1 ± yCP). Thus, the semileptonic branching 
fraction of the CP eigenstates DCP± is BDCP±→l ≈ BD→l(1 ∓ yCP), 
and yCP can be obtained as

9 Charge-conjugate modes are implied.
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Table 1
D final states reconstructed in this analysis.

Type Mode

CP+ K + K − , π+π− , K 0
S π

0π0

CP− K 0
S π

0, K 0
S ω, K 0

S η
Semileptonic K ∓e±ν , K ∓μ±ν

yCP ≈ 1

4

(BDCP−→l

BDCP+→l
− BDCP+→l

BDCP−→l

)
. (3)

At BESIII, quantum-correlated D0 D0 pairs produced at thresh-
old allow us to measure BDCP±→l . Specifically, we begin with a fully 
reconstructed D candidate decaying into a CP eigenstate, the so-
called Single Tag (ST). We have thus tagged the CP eigenvalue of 
the partner D meson. For a subset of the ST events, the so-called 
Double Tag (DT) events, this tagged partner D meson is also ob-
served via one of the semileptonic decay channels. CP violation in 
D decays is known to be very small [18], and can be safely ne-
glected. Therefore, BDCP∓→l can be obtained as

BDCP∓→l = NCP±;l
NCP±

· εCP±
εCP±;l

, (4)

where NCP± (NCP±;l) and εCP± (εCP±;l) denote the signal yields and 
detection efficiencies of ST decays D → CP± (DT decays D D →
CP±; l), respectively. For CP eigenstates, as listed in Table 1, we 
choose modes with unambiguous CP content and copious yields. 
The CP violation in K 0

S decays is known to be very small, it is 
therefore neglected. The semileptonic modes used for the DT in 
this analysis are K ∓e±ν and K ∓μ±ν . 

1.3. The BESIII detector and data sample

The analysis presented in this paper is based on a data sam-
ple with an integrated luminosity of 2.92 fb−1 [23] collected with 
the BESIII detector [24] at the center-of-mass energy of 

√
s =

3.773 GeV. The BESIII detector is a general-purpose solenoidal de-
tector at the BEPCII [25] double storage rings. The detector has a 
geometrical acceptance of 93% of the full solid angle. We briefly 
describe the components of BESIII from the interaction point (IP) 
outwards. A small-cell main drift chamber (MDC), using a helium-
based gas to measure momenta and specific ionizations of charged 
particles, is surrounded by a time-of-flight (TOF) system based 
on plastic scintillators that determines the flight times of charged 
particles. A CsI(Tl) electromagnetic calorimeter (EMC) detects elec-
tromagnetic showers. These components are all situated inside a 
superconducting solenoid magnet, that provides a 1.0 T magnetic 
field parallel to the beam direction. Finally, a multi-layer resis-
tive plate counter system installed in the iron flux return yoke 
of the magnet is used to track muons. The momentum resolution 
for charged tracks in the MDC is 0.5% for a transverse momen-
tum of 1 GeV/c. The energy resolution for showers in the EMC is 
2.5% (5.0%) for 1 GeV photons in the barrel (end cap) region. More 
details on the features and capabilities of BESIII can be found else-
where [24].

High-statistics Monte Carlo (MC) simulations are used to eval-
uate the detection efficiency and to understand backgrounds. The
geant4-based [26] MC simulation program is designed to simulate 
interactions of particles in the spectrometer and the detector re-
sponse. For the production of ψ(3770), the kkmc [27] package is 
used; the beam energy spread and the effects of initial-state radi-
ation (ISR) are included. The MC samples consist of the D D pairs 
with consideration of quantum coherence for all modes relevant to 
this analysis, non-D D decays of ψ(3770), ISR production of low-
mass ψ states, and QED and qq̄ continuum processes. The effective 
luminosity of the MC samples is about 10 times that of the an-
alyzed data. Known decays recorded by the Particle Data Group 
(PDG) [6] are generated with evtgen [28,29] using PDG branch-
ing fractions, and the remaining unknown decays are generated 
with lundcharm [30]. Final-state radiation (FSR) of charged tracks 
is taken into account with the photos package [31].

2. Event selection and data analysis

Each charged track is required to satisfy | cos θ | < 0.93, where 
θ is the polar angle with respect to the beam axis. Charged tracks 
other than K 0

S daughters are required to be within 1 cm of the IP 
transverse to the beam line and within 10 cm of the IP along the 
beam axis. Particle identification for charged hadrons h (h = π, K ) 
is accomplished by combining the measured energy loss (dE/dx) 
in the MDC and the flight time obtained from the TOF to form a 
likelihood L(h) for each hadron hypothesis. The K ± (π±) candi-
dates are required to satisfy L(K ) > L(π) (L(π) >L(K )).

The K 0
S candidates are selected with a vertex-constrained fit 

from pairs of oppositely charged tracks, which are required to be 
within 20 cm of the IP along the beam direction; no constraint 
in the transverse plane is required. The two charged tracks are 
not subjected to the particle identification discussed above, and 
are assumed to be pions. We impose 0.487 GeV/c2 < Mπ+π− <

0.511 GeV/c2, that is within about 3 standard deviations of the 
observed K 0

S mass, and the two tracks are constrained to originate 
from a common decay vertex by requiring the χ2 of the vertex fit 
to be less than 100. The decay vertex is required to be separated 
from the IP with a significance greater than two standard devia-
tions.

Reconstructed EMC showers that are separated from the extrap-
olated positions of any charged tracks by more than 10 standard 
deviations are taken as photon candidates. The energy deposited in 
nearby TOF counters is included to improve the reconstruction effi-
ciency and energy resolution. Photon candidates must have a min-
imum energy of 25 MeV for barrel showers (| cos θ | < 0.80) and 
50 MeV for end cap showers (0.84 < | cos θ | < 0.92). The show-
ers in the gap between the barrel and the end cap regions are 
poorly reconstructed and thus excluded. The shower timing is re-
quired to be no later than 700 ns after the reconstructed event 
start time to suppress electronic noise and energy deposits un-
related to the event. The η and π0 candidates are reconstructed 
from pairs of photons. Due to the poorer resolution in the EMC end 
cap regions, those candidates with both photons coming from EMC 
end caps are rejected. The invariant mass Mγ γ is required to be 
0.115 GeV/c2 < Mγ γ < 0.150 GeV/c2 for π0 and 0.505 GeV/c2 <

Mγ γ < 0.570 GeV/c2 for η candidates. The photon pair is kine-
matically constrained to the nominal mass of the π0 or η [6] to 
improve the meson four-vector calculation.

The ω candidates are reconstructed through the decay ω →
π+π−π0. For all modes with ω candidates, sideband events in 
the Mπ+π−π0 spectrum are used to estimate peaking backgrounds 
from non-ω D → K 0

Sπ
+π−π0 decays. We take the signal region 

as (0.7600, 0.8050) GeV/c2 and the sideband regions as (0.6000, 
0.7300) GeV/c2 or (0.8300, 0.8525) GeV/c2. The upper edge of the 
right sideband is restricted because of the K ∗ρ background that 
alters the shape of Mπ+π−π0 . The sidebands are scaled to the esti-
mated peaking backgrounds in the signal region. The scaling factor 
is determined from a fit to the Mπ+π−π0 distribution in data, as 
shown in Fig. 1, where the ω signal is determined with the MC 
shape convoluted with a Gaussian whose parameters are left free 
in the fit to better match data resolution, and the background is 
modeled by a polynomial function. 
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Fig. 1. Fit to the invariant mass Mπ+π−π0 for events reconstructed from data. The 
solid line is the total fit and the dashed line shows the polynomial background. The 
shaded area shows the signal region and cross-hatched areas show the sidebands.

Table 2
Requirements on �E for ST D candidates.

Mode Requirement (GeV)

K + K − −0.020 < �E < 0.020
π+π− −0.030 < �E < 0.030
K 0

S π
0π0 −0.080 < �E < 0.045

K 0
S π

0 −0.070 < �E < 0.040

K 0
S ω −0.050 < �E < 0.030

K 0
S η −0.040 < �E < 0.040

2.1. Single tags using CP modes

To identify the reconstructed D candidates, we use two vari-
ables, the beam-constrained mass MBC and the energy difference 
�E , which are defined as

MBC ≡
√

E2
beam/c4 − |	pD |2/c2, (5)

�E ≡ E D − Ebeam, (6)

where 	pD and E D are the momentum and energy of the D can-
didate in the e+e− center-of-mass system, and Ebeam is the beam 
energy. The D signal peaks at the nominal D mass in MBC and at 
zero in �E . We accept only one candidate per mode per event; 
when multiple candidates are present, the one with the small-
est |�E| is chosen. Since the correlation between �E and MBC
is found to be small, this will not bias the background distribution 
in MBC. We apply the mode-dependent �E requirements listed in 
Table 2.

For K +K − and π+π− ST modes, if candidate events contain 
only two charged tracks, the following requirements are applied to 
suppress backgrounds from cosmic rays and Bhabha events. First, 
we require at least one EMC shower separated from the tracks of 
the ST with energy larger than 50 MeV. Second, the two ST tracks 
must not be both identified as muons or electrons, and, if they 
have valid TOF times, the time difference must be less than 5 ns. 
Based on MC studies, no peaking background is present in MBC in 
our ST modes except for the K 0

Sπ
0 mode. In the K 0

Sπ
0 ST mode, 

there are few background events from D0 → ρπ . From MC studies, 
the estimated fraction is less than 0.5%; this will be considered in 
the systematic uncertainties.

The MBC distributions for the six ST modes are shown in Fig. 2. 
Unbinned maximum likelihood fits are performed to obtain the 
numbers of ST yields except in the K 0

Sω mode, for which a binned 
least-square fit is applied to the MBC distribution after subtrac-
tion of the ω sidebands. In each fit, the signal shape is derived 
from simulated signal events convoluted with a bifurcated Gaus-
sian with free parameters to account for imperfect modeling of the 
detector resolution and beam energy calibration. Backgrounds are 
described by the ARGUS [32] function. The measured ST yields in 
Table 3
Yields and efficiencies of all ST and DT modes, where NCP± (NCP±;l ) and εCP±
(εCP±;l ) denote signal yields and detection efficiencies of D → CP± (D D → CP±; l), 
respectively. The uncertainties are statistical only.

ST Mode NCP± εCP± (%)

K + K − 54 494 ±251 61.32 ±0.18

π+π− 19 921 ±174 64.09±0.18

K 0
S π

0π0 24 015 ±236 16.13 ±0.08

K 0
S π

0 71 421 ±285 40.67±0.14

K 0
S ω 20 989 ±243 13.44 ±0.07

K 0
S η 9878 ±117 34.39 ±0.13

DT Mode NCP±;l εCP±;l (%)

K + K − , K eν 1216 ±40 39.80 ±0.14

π+π− , K eν 427 ±23 41.75 ±0.14

K 0
S π

0π0, K eν 560 ±28 11.05±0.07

K 0
S π

0, K eν 1699 ±47 26.70 ±0.12

K 0
S ω, K eν 481 ±30 9.27±0.07

K 0
S η, K eν 243 ±17 22.96 ±0.11

K + K − , Kμν 1093 ±37 36.89 ±0.14

π+π− , Kμν 400 ±23 38.43 ±0.15

K 0
S π

0π0, Kμν 558 ±28 10.76±0.08

K 0
S π

0, Kμν 1475 ±43 25.21 ±0.12

K 0
S ω, Kμν 521 ±27 8.75±0.07

K 0
S η, Kμν 241 ±18 21.85 ±0.11

the signal region of 1.855 GeV/c2 < MBC < 1.875 GeV/c2 and the 
corresponding efficiencies are given in Table 3.

2.2. Double tags of semileptonic modes

In each ST event, we search among the unused tracks and 
showers for semileptonic D → K e(μ)ν candidates. We require that 
there be exactly two oppositely-charged tracks that satisfy the 
fiducial requirements described above.

In searching for Kμν decays, kaon candidates are required to 
satisfy L(K ) > L(π). If the two tracks can pass the criterion, the 
track with larger L(K ) is taken as the K ± candidate, and the 
other track is assumed to be the μ candidate. The energy de-
posit in the EMC of the μ candidate is required to be less than 
0.3 GeV. We further require the Kμ invariant mass MKμ to be 
less than 1.65 GeV/c2 to reject D → Kπ backgrounds. The total 
energy of remaining unmatched EMC showers, denoted as Eextra, 
is required to be less than 0.2 GeV to suppress D → Kππ0 back-
grounds. To reduce backgrounds from the D → K eν process, the 
ratio RL′ (e) ≡ L′(e)/[L′(e) + L′(μ) + L′(π) + L′(K )] is required 
to be less than 0.8, where the likelihood L′(i) for the hypothesis 
i = e, μ, π or K is formed by combining EMC information with 
the dE/dx and TOF information.

To select K eν events, electron candidates are required to satisfy 
L′(e) > 0.001 and R′

L′ (e) > 0.8, where R′
L′ (e) ≡ L′(e)/[L′(e) +

L′(π) + L′(K )]. If both tracks satisfy these requirements, the one 
with larger R′

L′ (e) is taken as the electron. The remaining track is 
required to satisfy L(K ) >L(π).

The variable Umiss is used to distinguish semileptonic signal 
events from background:

Umiss ≡ Emiss − c|	pmiss|, (7)

where,

Emiss ≡ Ebeam − E K − El, (8)

	pmiss ≡ −
[
	pK + 	pl + p̂ST

√
E2

beam/c2 − c2m2
D

]
, (9)
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Fig. 2. The MBC distributions for ST D candidates from data. The solid line is the total fit and the dashed line shows the background contribution described by an ARGUS 
function.
E K (l) (	pK (l)) is the energy (three-momentum) of K ∓ (l±), p̂ST is 
the unit vector in the direction of the reconstructed CP-tagged D
and mD is the nominal D mass. The use of the beam energy and 
the nominal D mass for the magnitude of the CP-tagged D im-
proves the Umiss resolution. Since E equals to |	p|c for a neutrino, 
the signal peaks at zero in Umiss.

The Umiss distributions are shown in Fig. 3, where the tagged-D
is required to be in the region of 1.855 GeV/c2 < MBC <

1.875 GeV/c2. DT yields, obtained by fitting the Umiss spectra, are 
listed in Table 3. Unbinned maximum likelihood fits are performed 
for all modes except for modes including ω. For modes including 
an ω, binned least-square fits are performed to the ω sideband-
subtracted Umiss distributions. In each fit, the K eν or Kμν signal 
is modeled by the MC-determined shape convoluted with a bifur-
cated Gaussian where all parameters are allowed to vary in the fit. 
Backgrounds for K eν are well described with a first-order polyno-
mial. However, in the Kμν mode, backgrounds are more complex 
and consist of three parts. The primary background comes from 
D → Kππ0 decay. To better control this background, we select 
a sample of D → Kππ0 in data by requiring Eextra > 0.5 GeV, in 
which the Umiss shape of Kππ0 is proved to be basically the same 
as that in the region of Eextra < 0.2 GeV in MC simulation. The se-
lected Kππ0 sample is used to extract the resolution differences 
in the Umiss shape of Kππ0 in MC and data, and to obtain the 
D → Kππ0 yields in Eextra > 0.5 GeV region. Then, in fits to Umiss, 
the Kππ0 is described by the resolution-corrected shape from MC 
simulations and its size is fixed according to the relative simulated 
efficiencies of the Eextra > 0.5 GeV and Eextra < 0.2 GeV selection 
criteria. The second background from K eν events is modeled by a 
MC-determined shape. Its ratio to the signal yields is about 3.5% 
based on MC studies and is fixed in the fits. Background in the 
third category includes all other background processes, which are 
well described with a first-order polynomial.

3. Systematic uncertainties

Most sources of uncertainties for the ST or DT efficiencies, such 
as tracking, PID, and π0, η, K 0

S reconstruction, cancel out in de-
termining yCP . The main systematic uncertainties come from the 
background veto, modeling of the signals and backgrounds, fake 
tagged signals, and the CP-purity of ST events, as shown in Ta-
ble 4.

The cosmic and Bhabha veto is applied only for the K K and 
ππ ST events which have only two tracks. The effect of this veto 
is estimated based on MC simulation. We compare the cases with 
and without this requirement and the resultant relative changes in 
ST efficiencies are about 0.3% for both the K K and ππ modes. The 
resulting systematic uncertainty on yCP is 0.001.

Peaking backgrounds are studied for different ST modes, espe-
cially for ρπ backgrounds in the K 0

Sπ
0 tag mode and K 0

Sπ
+π−π0

backgrounds in the K 0
Sω tag mode. Based on a study of the inclu-

sive MC samples, the fraction of peaking backgrounds in K 0
Sπ

0 is 
0.3%. The uncertainties on yCP caused by this is about 0.001. Un-
certainties from the sideband subtraction of peaking backgrounds 
for the K 0

Sω mode are studied by changing the sideband and signal 
regions; changes in the efficiency-corrected yields are negligible.

Fits to the MBC and Umiss spectra could induce systematic er-
rors by the modeling of the signal and background shape. The MC-
determined signal shapes convoluted with a Gaussian are found 
to describe the data well, and systematic uncertainties from the 
modeling of the signal are assumed to be negligible. To estimate 
uncertainties from modeling of backgrounds, different methods are 
considered. For the CP ST yields, we include an additional back-
ground component to account for the ψ(3770) → D D process with 
a shape determined by MC simulation whose yield is determined 
in the fit. The uncertainties in the fits to MBC are uncorrelated 
among different tag modes, and the obtained change on yCP is 
0.001. For the DT semileptonic yields, the polynomial functions 
that are used to describe backgrounds in our nominal fits are re-
placed by a shape derived from MC simulations. For the Kμν
mode, the size of the main background Kππ0 is fixed in our nom-
inal fit, so the statistical uncertainties of the number of selected 
Kππ0 events introduces a systematic error. To estimate the asso-
ciated uncertainty, we vary its size by ±1 standard deviation based 
on the selected Kππ0 samples. Systematic uncertainties due to 
the Umiss fits are treated as positively correlated among different 
tag modes. We take the maximum change on the resultant yCP , 
that is 0.006, as systematic uncertainty.

The DT yields are obtained from the fit to the Umiss spectra. 
However, one also has to consider events that peak at Umiss but are 
backgrounds in the MBC spectra, the so-called fake tagged signals. 
This issue is examined by fitting to the MBC versus Umiss two-
dimensional plots. From this study, the fake tagged signal compo-
nent is proved to be very small. The resulting difference on yCP is 
0.002 and assigned as a systematic uncertainty.

We study the CP-purities of ST modes by searching for same-CP
DT signals in data. Assuming CP conservation in the charm sector, 
the same-CP process is prohibited, unless the studied CP modes 
are not pure or the initial C-odd D0 D0 system is diluted. The CP
modes involving K 0

S are not pure due to the existence of small 
CPV in K 0–K 0 mixing [6]. However, this small effect is negligible 
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Fig. 3. Fit to the Umiss distributions for selected DT events from data. In each plot, the solid line is the total fit, the dashed line in K eν shows the contribution of polynomial 
backgrounds, and the dash-dotted line in Kμν shows the contribution of the main Kππ0 backgrounds.

Table 4
Summary of systematic uncertainties. Relative systematic uncertainties are listed for each tag mode in percent, while the resulting absolute uncertainties on ycp are shown 
in the last column. Negligible uncertainties are denoted by “–”.

K + K − π+π− K 0
S π

0π0 K 0
S π

0 K 0
S ω K 0

S η ycp

Background 0.3 0.3 – 0.3 – – 0.001

MBC fit 0.4 0.1 2.4 0.4 0.1 1.4 0.001

Umiss fit (K eν) 1.8 1.3 2.4 1.6 8.1 1.2
0.006

Umiss fit (Kμν) 3.2 7.0 4.6 2.5 1.7 1.7

Fake tag (K eν) 0.2 1.4 0.9 1.2 3.1 0.4
0.002

Fake tag (Kμν) 1.0 0.7 0.5 0.9 4.8 0.4

CP-purity – – 0.4 – 0.2 0.2 0.001
with our current sensitivity. Hence, K 0
Sπ

0 is assumed to be a clean 
CP mode, as its background level is very low. As a conservative 
treatment, we study DT yields of (K 0

Sπ
0, K 0

Sπ
0) to verify its pure 

CP-odd eigenstate nature and the CP-odd environment of the D0 D0

pair. The observed numbers of this DT signals are quite small, and 
we estimate the dilution of the C-odd initial state to be less than 
2% at 90% confidence level. This affects our measurement of yCP by 
less than 0.001. The purity of the K 0

Sπ
0 mode is found to be larger 

than 99%. Due to the complexity of the involved non-resonant and 
resonant processes in K 0

Sπ
0π0 and K 0

Sω, the CP-purities of these 
tag modes could be contaminated. We take the mode K + K − as a 
clean CP-even tag to test K 0

Sπ
0π0, and take K 0

Sπ
0 to test K 0

Sω and 
K 0

Sη. The CP-purities of K 0
Sπ

0π0, K 0
Sω and K 0

Sη are estimated to 
be larger than 89.4%, 93.3% and 93.9%, respectively. Based on the 
obtained CP purities, the corresponding maximum effect on the 
determined yCP is assigned as systematic uncertainty.

Systematic uncertainties from different sources are assumed to 
be independent and are combined in quadrature to obtain the 
overall yCP systematic uncertainties. The resultant total yCP sys-
tematic uncertainties is 0.007.

4. Results

The branching ratios of K ∓e±ν and K ∓μ±ν are summed to ob-
tain BDCP∓→l = BDCP∓→K eν + BDCP∓→Kμν . To combine results from 
different CP modes, the standard weighted least-square method is 
utilized [6]. The weighted semileptonic branching fraction B̃DCP±→l

is determined by minimizing
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Table 5
Values of branching ratio of DCP±→l obtained from different tag modes and the 
combined branching ratio. The errors shown are statistical only.

Tag mode BDCP−→K eν (%) BDCP−→Kμν (%) BDCP−→l (%)

K + K − 3.44 ± 0.12 3.33 ± 0.12 6.77 ± 0.17
π+π− 3.29 ± 0.18 3.35 ± 0.20 6.64 ± 0.27
K 0

S π
0π0 3.40 ± 0.18 3.48 ± 0.18 6.89 ± 0.26

B̃DCP−→l 3.40 ± 0.09 3.37 ± 0.09 6.77 ± 0.12

Tag mode BDCP+→K eν (%) BDCP+→Kμν (%) BDCP+→l (%)

K 0
S π

0 3.62 ± 0.10 3.33 ± 0.10 6.96 ± 0.15
K 0

S ω 3.32 ± 0.21 3.81 ± 0.21 7.14 ± 0.30
K 0

S η 3.68 ± 0.26 3.84 ± 0.29 7.52 ± 0.40

B̃DCP+→l 3.58 ± 0.09 3.46 ± 0.09 7.04 ± 0.13

χ2 =
∑
α

(
B̃DCP±→l − Bα

DCP±→l

)2

(
σα

CP±
)2

, (10)

where α denotes different CP-tag modes and σα
CP± is the statistical 

error of Bα
DCP±→l for the given tag mode. The branching fractions 

of BDCP±→l and the obtained B̃DCP±→l are listed in Table 5. Finally, 
yCP is calculated using Eq. (3), with BDCP±→l replaced by B̃DCP±→l . 
We obtain yCP = (−2.0 ± 1.3 ± 0.7)%, where the first uncertainty 
is statistical and the second is systematic.

5. Summary

Using quantum-correlated D0 D0 pairs produced at 
√

s =
3.773 GeV, we employ a CP-tagging technique to obtain the yCP
parameter of D0–D0 oscillations. Under the assumption of no di-
rect CPV in the D sector, we obtain yCP = (−2.0 ± 1.3(stat.) ±
0.7(syst.))%. This result is compatible with the previous measure-
ments [18,33–35] within about two standard deviations. However, 
the precision is still statistically limited and less precise than the 
current world average [6]. Future efforts using a global fit [36] may 
better exploit the BESIII data, leading to a more precise result.
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