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ABSTRACT Recent reviews of the literature indicate the need for empirical studies on cross-project defect
prediction (CPDP) that would allow aggregation of the evidence and improve predictive performance. Most
empirical studies predict defects at granularity levels of method, class, file, and module/package during the
coding phase, and thereby avoid external failure costs. The main goal of this study is to perform an empirical
study on early defect prediction at the beginning of a project at the product level of granularity for using it
as input in planning quality activities of the project. Hence, both internal and external failure costs could be
avoided as much as possible through proper planning of quality. We first made a systematic mapping study
(SMS) on secondary studies (literature reviews) on defect prediction to identify the most used datasets,
the project attributes and metrics utilized as estimators, and the supervised learning methods employed for
training the data. Then, we made an empirical study on defect density prediction using cross-project data.
We collected 760 project data from the International Software Benchmarking (ISBSG) dataset version 11,
which reported both defects and functional size attributes.We trained the predictionmodels using: i) the com-
plete set of project attributes, ii) the individual attributes, and iii) multiple subsets of attributes. We employed
classification and regression approaches of machine learning. The machine learning models are trained using
original values of the dataset, and z-score and logged transformations of original values to explore the effects
of data normalization on prediction. Most machine learning models trained on the z-score transformation
of the dataset performed best for classifying defects. The Multilayer-Perceptron (Neural Network) model
trained on the z-score transformation of complete dataset predicted defects with the highest F1-score of
0.89 using binary classification. The logged transformation and feature selection methods improved the
results for multivariable regression. The multivariable regression predicted defects with the highest Root
Mean Squared Error (RMSE) and R2 (r-squared) values of 0.4 and 0.9, respectively, with a subset of
11 features using logged transformation. The results of classification and regression approaches indicate
that defects can be predicted with reasonable accuracy at the software product level using cross-project data.

INDEX TERMS Cross projects dataset, defect prediction, feature selection, fault prediction, ISBSG dataset,
machine learning.
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I. INTRODUCTION
The costs associated with project quality consist of the cost
of quality (money spent during the project to avoid failures)
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and the cost of poor quality (money spent during and after
the project for failures) [1]. Software companies require
predicting time and resources for quality activities such as
reviews, inspections, and testing at the beginning of a project
as well as throughout the development life cycle as the data
on defects are being collected in the software requirements
specification, design, coding, and testing phases [2]. Most
of the literature on defects estimation focused on predicting
defects during the testing phase to allocate the required time
and resources for removing them before delivering to the
customers [3], [4] and thereby avoiding external failure costs
(i.e., the cost of failures found by the customer). The iden-
tification and fixation of post-deployment defects typically
require more effort as compared to the software development
and testing phases. Therefore, the defect prediction term is
usually considered as referring to predicting software defects
in an intermediate or final software product, or its releases by
the project team during testing activities [5]. Indeed, a recent
SLR andmeta-analysis on defect prediction [4] identified that
most of the defect prediction studies predict defects at the
method, class, file, and module/package granularity levels.
They utilize the attributes of source code artifacts which are
produced during the software coding phase [6], [7].
On the other hand, internal failure costs (i.e., the cost of

rework for the failures found by the team during testing) are
also very high [8]. Therefore, early software defect prediction
for the final product is crucial for planning quality assurance
and control activities to avoid both internal and external costs
of failure [9].

The main goal of the study is to perform an empirical study
on defects prediction of software at the beginning of a project
for using it as an input in planning quality activities of the
project. Hence, both internal and external failure costs could
be avoided as much as possible.

To this end, we first made a Systematic Mapping Study
(SMS) of literature reviews on defect prediction for identi-
fying i) the machine learning methods applied, ii) the best
estimator attributes, and iii) the project datasets utilized.
According to the findings of the SMS, we designed our
empirical study. In our SMS, we did not find any study that
predicted defects for a software product at the beginning
of a project using a publicly available dataset. This finding
is in line with what Hosseini et al. [7] mentioned in their
literature review and meta-analysis. Hence, most previous
work is focused on defect prediction during the testing phase,
which is too late to avoid costs of poor quality for a project.

Software defect prediction typically requires fitting amath-
ematical model on a training dataset that learns an estimator
(e.g., software project and/or product attributes), and later
using the model on unseen or new data [2]. In this study,
we used binary classification and regression-based machine
learning models for model fitting.

Most of the primary studies we identified in the SMS
used machine learning approaches of binary classification
and regression. The binary classification approaches predict
the code as either defective or non-defective. The regression

approaches predict the number of defects on a continuous
scale. Hosseini et al. [7] found that 29 out of 30 primary stud-
ies on defect prediction predicted binary classes of defects
and only one study performed regression. The regression
provides more information because the prediction of several
defects helps to plan testing and development resources that
will be required to find and fix the defects.

Software companies have been reported to have difficulty
in collecting and organizing useful defect-related data [4],
[10]. Therefore, they tend to collect cross-project data (CPD)
from open-source projects or publicly available datasets [3],
[11]. Radjenovicetal et al. [11] found that 58% of the defect
prediction studies used private datasets, 21% used partially
public datasets, and 22% used public datasets. The private
datasets including defect data, or source code are not publicly
available. The partially public datasets share the source code
of the project and defect data without the metrics’ values
(i.e., project attributes). The public datasets share the met-
rics values and the defects data for all the modules [11].
The most common estimators among the publicly available
datasets include object-oriented and static code metrics. The
object-oriented metrics contain information such as the num-
ber of classes, weighted method per class, and depth of the
inheritance tree. The static code metrics contain information
such as code churn, lines of code, number of modules/files,
cyclomatic complexity, and function calls.

When the training dataset includes data from the same
project, the process is referred to as within-project defects
prediction (WPDP), and when data from other projects is
used, it is referred to as cross-project defects prediction
(CPDP) [10]. A recent systematic literature review (SLR) on
CPDP [4] found that most of the primary studies on CPDP
were published since 2010 and the interest has increased
since 2015. For example, Malhotra [12] trained models using
the NASA MDP dataset and predicted defects for several
telecommunication projects in Turkcell. Turhan et al. [5]
trained models using the Promise dataset [13] and predicted
defects in projects of the SOFTLAB. Both studies predicted
software defects at the module level using static code metrics
such as cyclomatic complexity, number of lines of code, deci-
sion count, and the total number of operands and operators.

In this study, we used a publicly available software projects
dataset, namely, the International Software Benchmarking
Standards Group (ISBSG) dataset version 11. According to
our SMS results, this dataset was not previously utilized for
CPDP studies.We used a chunk of projects and their attributes
for training the prediction model and the model predicted the
software defects density (DD) of the products in the other
chunk of projects.

The CPDP presents the challenge of effectively using a
dataset of multiple projects in such a way that the effect of
the heterogeneous data on prediction is reduced [4]. The data
can be heterogeneous in terms of sources (e.g., databases and
spreadsheets), formats (e.g., CSV, JSON, and XML), types
(e.g., text, and numerical) and it might suffer from different
data qualities from different sources. The data coming from
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different sources needs to be integrated and its features are
needed to be pre-processed to make them consistent in terms
of their formats and data types.

In this study, we collected both numerical and categorical
data from the ISBSG dataset. The ISBSG provides data in
the MS Excel format. The data formats are consistent in
the dataset and the data types were already defined by the
group. The quality of the data was also assessed and provided.
Hosseini et.al [7] pointed out a problem of lack of normal
distribution in all the CPDP datasets, which we also observed
in the ISBSG dataset, and thus normalized the original data.
In CPDP, the challenge of dimensionality reduction is sig-
nificant. This would help train generalized machine learning
models and avoid overfitting. In this study, we catered to this
problem. We also followed some of the relevant guidelines of
Hosseini et al. [7] and Hall et al. [14] to our study (e.g., data
quality; performance measures, and statistical tests) and we
provided our reflections in the light of both studies.

Hence contributions of the study are:
• A systematic mapping study (SMS) on secondary stud-
ies (literature reviews) on CPDP.

• First empirical study on software product defects pre-
diction for planning purposes using a publicly available
dataset that contains cross project data.

• Collection of both numerical and categorical data from
the ISBSG dataset. Transformed original data into
z-scores and log values to cater lack of normal distri-
bution.

• For the dimensionality reduction challenge, the study
trained the models on i) the complete set of attributes,
ii) the individual attributes, and iii) multiple subsets of
attributes identified by feature selection methods.

• Comparisons of the study results to the findings of the
secondary studies.

This article is organized as follows; Section II presents
problem definition and data preparation phases of the empiri-
cal study and Section III presents experimentation of machine
learning models and analysis of the results. Section IV
presents the conclusions of the study and reflections on
the findings of the study with respect to previous studies.
Appendix A presents the details of our SMS on the literature
reviews on defects prediction, Appendix B provides links for
the source codes of experiments and details of the obtained
results, and Appendix C presents names and descriptions of
attributes/measures used in the ISBSG dataset.

II. EMPIRICAL STUDY
The empirical study included three phases: problem defi-
nition, data preparation, and experimentation as shown in
Figure 1. Below, in the following subsections, we discuss
these phases.

A. PROBLEM DEFINITION
In our SMS on secondary studies on defect prediction
(Appendix A), we identified the most used datasets as NASA
MDP, ECLIPSE, PROMISE, Mozilla, Apache, Jureczko, and

Softlab. According to our findings, the ISBSG dataset has
not been previously used for defect prediction. The ISBSG
dataset contains data from 5,052 projects. We used a subset of
this dataset that reported data on defects. The subset contains
760 projects with 23 attributes (Table 12). As for the defects,
the ISBSG defines the Defects Density (DD) attribute for
software products. The defect density measure is in general
calculated as shown in (1).

Defect density =
number of defects
software size

(1)

The primary studies used in the SMS count number
of defects, however measuring DD for CPDP offers more
advantages. The DD provides a normalized count of defects
concerning size and it enables fair comparison of projects
with varying sizes. The ISBSG dataset measures the size in
terms of functionality provided by the software (i.e., func-
tional size units) instead of counting source lines of code. The
functional size units are a more useful measure of size when
software projects are implemented in different programming
languages.

The ISBSG defines DD as ‘‘the Number of defects reported
per 1,000 Functional Size Units of delivered software in
the first month of use of the software’’. The availability of
values/labels for the DD attribute [target class] makes its
prediction suitable for supervised learning [15], [16]. The DD
attributes (dependent variable or target class) are available for
760 projects in the ISBSG dataset.

Two validity threats concerning the constructs of the empir-
ical study might have been the fact that the ISBSG dataset has
a mixture of different functional size measurement methods,
and the defect counting methods differ from organization to
organization. The ISBSG clearly defines what is a defect and
states that it has worked with the data-providing companies
to report defects consistently and using well-defined defect
categories.

As for the units of functional sizes reported, we ana-
lyzed the dataset. Among the functional size measurement
methods in the dataset, the Common Software Measurement
International Consortium (COSMIC) method was developed
to measure both business applications and real-time soft-
ware. The rest of the methods have a similar scale for
reporting software business applications’ functional size.
The COSMIC scale for reporting the sizes of business
applications is also similar to those of previous methods.
Cuadrado-Gallego et al. [17] reported an approximated con-
version factor of 1:1, within a range between 0.9 and 1.1,
but moving from a larger number of data points analyzed
than in past studies. As most of the projects measured by the
COSMIC method are business applications (57/69 projects),
we decided to keep all 760 projects in our dataset.

The DD is predicted by using regression and classification
approaches of machine learning. The regression uses a vari-
able (x) or set of variables (x1, x2, . . . , xn) to learn an output
variable y as a mapping function such that f(x)= y [15], [16].
The function approximating a numerical value of y based on a
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FIGURE 1. Cross-project defect density prediction study.
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single variable is linear regression; otherwise, it is amultivari-
able (multiple) regression. The xi values are either numerical
or ordinal. Examples of regression include estimating the
number of defects, function points, and effort (man-hours)
in the upcoming project. Similarly, the classification predicts
the value of y in terms of a variable (x) or a set of variables
(x1, x2, . . . , xn). The xi values are either numerical, ordinal or
feature vectors. The value of y is either predicted as a binary
class (e.g., non-faulty, faulty) or multi-class (e.g., non-faulty,
very faulty, extremely faulty) [15], [16].

B. DATA PREPARATION
The data preparation consists of three sub-tasks i.e.,
dataset quality description, dataset description, and dataset
construction.

1) DATASET QUALITY DESCRIPTION
The ISBSG dataset mostly includes numerical, categorical,
and Boolean types of values. The coding schemes are con-
sistent in the dataset and a meta-data file is available along
the dataset. The dataset used in this study has no typograph-
ical errors or coding inconsistencies. The ISBSG dataset
provides quality ratings for the project’s data. The ISBSG
organization claims that their quality ratings are trusted by
software development organizations because they provide
structured guidelines and questionnaires for data collection,
and they rigorously check and recheck the quality of data
before adding it to their repository.

Table 1 presents a description of quality ratings and the
number of projects with each quality rating in the ISBSG
dataset. The largest part of the data (92%) is classified as
‘A’ and ‘B’. According to [7] and [14], NASA, PROMISE,
and ECLIPSE are the top 3 most used datasets for WPDP
and according to [4], NASA, Jureczko, and Softlab are the
most used datasets for CPDP. We have observed that data
quality information is missing in these datasets and in general
among publicly available datasets. The quality rating is very
important as if we are unaware of the quality of data then it
makes the prediction less credible.

The software development organizations planning to use
the ISBSG dataset along with their dataset for CPDP can
develop their data quality guidelines in line with ISBSG.
It includes defining data quality criteria such as given in
Table 1. In addition, they should consistently define software
attributes such as those given in Appendix C. It should be
followed by identifying the sources of data collection (e.g.,
source code, software requirement specification (SRS) docu-
ment, test cases, etc.) from software development processes,
software products, and software development resources. The
data quality information can be improved through the data
profiling process i.e., defining meta-data such as statis-
tics about the data and dependencies among the features.
In addition, it involves defining use cases of data, profiling
non-relational data, and exploring tools for automated quality
assurance. A comprehensive data profiling mechanism can

be defined by following the guidelines of Abedjan et al. [18].
The quality of data is maintained through educating data
collection teams, organizing training and workshops, con-
ducting data audits, and treating data quality improvement as
a continuous process that is backed by project managers [19].

2) DATASET PRE-PROCESSING
This section presents descriptive statistics of the dataset and
its relevant pre-processing. Tables 2 and 3 represent types
of attributes/metrics and descriptive statistics of the dataset.
The definition of each attribute is presented in Appendix C.
Fenton and PFleeger defined three types of metrics (i.e.,
process, product, and resource) which are discussed in most
of the software measurement studies [20], [21].

A software development organization with a defined mea-
surement process has all of these three types of metrics
data collected from past projects. However, it is observed in
SMS studies (Appendix-A) that most of the defect prediction
datasets used mostly the product type metrics (e.g., size,
object-oriented, and complexity) followed by process metrics
(e.g., testing effort, deployment time, etc.). The resource met-
rics are occasionally found in publicly available datasets. This
study explores machine learning approaches using all three
types of metrics. We have used 23 metrics/features including
process (6), product (11), and resource (6) metrics in this
study.

Table 2 presents descriptive statistics of attributes/metrics
measured in numerical scale. The count attribute represents
the number of values available without imputation. The num-
ber of missing values is due to the reasons that every software
development organization does not collect all types of data
due to heterogeneous domains of projects, available budget,
and allocated time and objectives of the measurement pro-
cess. The analysis of standard deviation (std), min (minimum
value), max (maximum value), and quartiles (25%, 50%,
and 75%) indicate skewness of the data, which is dealt with
logarithmic transformation, given in (2), of attribute/metrics
values.

X ′
= log10 (X ) (2)

The heterogeneity of values in the dependent variable
(DD) and independent variables (23 features in Table 1)
is dealt with using the z-score, given in (3), where x is
the value of attribute/metrics, µ is the mean and σ is the
standard deviation. Table 3 presents descriptive statistics of
attributes/metrics containing categorical/discrete values.

Z − score =
x − µ

σ
(3)

The codes of discrete values in available data are found
consistent. The missing values are replaced with the help
of the KNN-imputer algorithm (proposed in [22]) by using
the sci-kit-learn API. It uses Euclidian distance between data
points to determine nearest neighbor values for missing data.
The use of logarithmic transformation and data normalization
using a z-score helps to mitigate large disparities among the
attribute/metric values. The data normalized using z-score
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TABLE 1. ISBSG dataset quality description.

TABLE 2. The attribute measured in numerical scale in the ISBSG dataset.

TABLE 3. The attribute measured in the categorical scale in the ISBSG dataset.

ranges between −3 and +3. Log10 transformed the values of
metrics ranging between 0.1 and 5.1 with an average of 2.1.
The available dataset is transformed from an MS Excel sheet
to CSV files.

The dataset is used for training regression and classi-
fication models. The regression models predict the DD
i.e., number of defects per unit of function point. The
regression approaches approximate a mapping function (f)
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TABLE 4. Dataset construction for supervised learning (classification).

from a set of continuous/categorical input variables of train-
ing data (x) to a continuous output variable y. The DD
attribute originally contains numerical/continuous values.
The classification models are trained to predict binary classes
i.e., defective, non-defective. The conversion of continuous
variables into discrete ones (nominal intervals) is critical in
machine learning as it increases learning efficiency, predic-
tion accuracy, and comprehension of prediction results in a
machine-learning context [15].

It is also critical because the majority of machine learning
algorithms perform better while predicting target class in
terms of discrete values for supervised learning [15]. A typ-
ical discretization method starts with sorting the numerical
values in ascending/descending order. The discretization bins
are created for ranges of values (i.e., intervals) by assigning a
nominal label (i.e., Yes for defective, No for non-defective) to
each interval. The binary classification for defect prediction
is most widely used for most of the supervised learning tasks
and especially for CPDP [7], [12], [15], [23].

3) FEATURES SELECTION
The cross-project datasets contain data from heterogeneous
projects therefore it has chances of containing irrelevant and
redundant features which might add to the curse of dimen-
sionality (i.e. lack of performance in prediction due to irrele-
vant features) [7], [15], [24], [25], [26]. The features/metrics
subsets selection techniques are used for dimensionality
reduction [7], [15],. These techniques are specifically identi-
fied and applied for regression and classification approaches
in the following sections.
Feature Selection for Classification: There is no fixed set

of metrics in the software measurement domain that is used
to predict a specific attribute [20], [21], [27]. Therefore,
this study predicts DD classes by using the dataset in three
different ways as illustrated in Table 4. Each attribute is used
to train the machine learning model to evaluate its ability to
predict DD. The complete dataset is also used to predict DD.
In addition, five feature selection techniques are also used to
select subsets of data. The description of feature selection
techniques and attributes/features selected with each tech-
nique are presented in the following section.

It can be performed in three ways i.e., wrapper, filters,
and embedded methods [28]. The wrapper method creates
subsets of a dataset using a prediction model. These subsets
are randomly created, and they range from an individual to
many features. The exhaustive search is time-consuming for
a large number of features. In our case, due to 23 features,

it was appropriate to use to method. The wrapper method
iteratively creates a learning scheme by using cross-validation
to select the best subset of attributes. Each subset is split
between train and test sets. Each subset trains a prediction
model, and the best subset is selected based on less number
of incorrect predictions (error rate) on the test set. The filter
methods use a proxy measure instead of an error rate. Fil-
ter methods are more computationally intensive than wrapper
methods. The proxy measures include feature ranking based
on different methods such as chi-square and information gain.
The chi-squared statistic of an attribute concerning the target
class is evaluated to select an attribute. It is calculated in
the (4):

X2
C = +

∑ (Oi − Ei)2

Ei
log10 (X ) (4)

where: C is the degree of freedom, O is the observed value(s),
and E is the expected value(s). The information gain of an
attribute is measured concerning the target class to select an
attribute. It is calculated in (5). Embedded methods are a
catch-all group of techniques that involve feature selection
as a part of building a prediction model such as using a recur-
sive feature elimination algorithm with principal component
analysis (PCA) and gain ratio to iteratively build a predictive
model by removing features with low weights [23].

InfoGain (Class,Attribute)

= H (Class) − H (Class|Attribtue) (5)

The gain ratio of an attribute is measuredwith respect to the
target class to select an attribute. It is calculated as follows:

GainR (Class,Attribute) =
InfoGain

H (Attribute)
(6)

The PCA is achieved through performing data transforma-
tion and eigenvectors of the attribute are mapped on principal
component space to eliminate eigenvectors with noise and
later transform back to the original space. The PCA is used
in combination with the Ranker search. The given dataset is
used to identify the kth principal component of a data vector
x(i) in the coordinates of tk(i) = x(i). w(k), (where w(k) is
the kth eigenvector of xTx) after the data transformation. The
subsets of features are presented in Table 14 of Appendix C.
Feature Selection for Regression: The regression

approaches approximate a mapping function (f) from a set of
continuous/categorical input variables of training data (x) to
a continuous output variable y. The dataset is a combination
of attributes that contain discrete values or real numbers.
The non-numeric discrete values are converted into numeric
values before training regression algorithms. This study uses
the dataset for regression in three different ways as illustrated
in Table 5. Each attribute is used to train the machine learning
model to evaluate its ability in predicting DD.

The complete dataset is also used to predict DD. In addi-
tion, four subsets of features are created with the help of
feature selection techniques i.e., multicollinearity, variance
inflation factor (VIF), P-value, and Bayesian information
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TABLE 5. Dataset construction for supervised learning (regression).

criterion (BIC). Statistics-API1 and Scikit-learn2 are used to
perform the aforementioned methods. A subset of features is
also created by adding values of effort attributes/measures in
the software development life cycle i.e., planning, specifying,
designing, building, testing, and implementation efforts as
‘total effort’ attribute/measure. In addition, this shortened
dataset is further reduced using multicollinearity analysis.
In total, this makes 6 subsets of features.

Multicollinearity in the dataset is detected when indepen-
dent variables are linearly correlating with each other. The
drawback of predicting with a dataset having multicollinear-
ity is the inability to know which features are contributing
toward predicting a dependent variable (DD in this study).
The heat map in Figure 2 is used to identify multicollinearity
in the dataset using Spearman correlation and features having
a higher correlation than 0.7 (moderately strong relationship)
are dropped to create a subset [29]. Estimating the p-values
of each feature helps to identify the statistically significant
features (p< 0.05) for predicting the dependent variable. It is
calculated by evaluating the results of ordinary least square
(OLS) regression using two-tailed T-tests using stats models
API. The features having a p-value less than 0.05 are selected
to create a subset [30].

The VIF is used to select a subset of features (independent
variables) by measuring the impact of their multicollinear-
ity on the preciseness of predicting dependent variables in
regression models [31]. Multicollinearity is observed when
two or more variables in a regression model have a high
correlation. The features having a VIF score less than 10 are
selected to create a subset [31]. The VIF score of 10 means
that the variance of the coefficient of prediction (such as R2,
RMSE, etc.) will be 10 times more than in a case where there
will not have been a correlation. The high VIF score causes
inflated standard errors which are uncertain in identifying
the unique contribution of each predicting variable in the
regression model.

This deteriorates the interpretability of the regression
model because it reduces the reliability and stability of the
coefficients of independent variables in a regression model.
The VIF score of 10 is most commonly used as a threshold of
feature selection because VIF less than 5 shows a low corre-
lation between predicting attributes. A VIF score between 5

1Statemodels 0.14.0: https://www.statsmodels.org/stable/index.html [Last
accessed: June 01, 2023].

2Scikit-learn: machine learning in Python – sickit-learn 1.2.2.:
https://scikit-learn.org/stable/ [Last accessed: June 01, 2023].

and 9 is considered as moderate and a VIF score greater than
9 or more is considered as high correlation [31].

The BIC is a statistical method that is used to select among
competing regression models. A regression model having the
smallest value of BIC is considered the most suitable for
prediction [32]. The formula to calculate the BIC score i.e.,
BIC= −2×LL+ log(N)× k, where LL is the log-likelihood
of themodel whichmeans howwell themodel fits the training
data, N is the number of training examples and k is the number
of independent variables in the model. The BIC method aims
to select a model that best fits the training data (higher LL)
and has a smaller number of independent variables (K).
It reduces the complexity and improves the interpretation of
the model. The lowest BIC score indicates the best tradeoff
between the model fitting the data (LL) and its complexity
in terms of several variables (K). The BIC score calculated
for models based on original, shortened, multicollinearity,
P-value, and VIF-based selection of features is 4048, 4009,
4023, 4006, and 4017 respectively. This hints that if com-
plexity and performance both are considered then a subset of
three features that are selected based on P-value might be best
predicting DD. However, if the complexity is ignored then
subsets of eleven features selected based on multicollinearity
performed slightly better than the p-value-based subset of
features. The subsets of features are presented in Table 14
of Appendix C.

III. EXPERIMENTATION
This phase discusses performance assessment criteria and
results and analysis of prediction.

A. PERFORMANCE ASSESSMENT CRITERIA
This task is performed in two steps. One is to decide how
the measurement dataset is used to train and test the machine
learning models, second is to decide how the performance of
machine learning models will be assessed.

1) TRAINING-TESTING METHOD
The selection of an appropriate training-testing method
depends on several factors such as dataset size, reliabil-
ity of testing/evaluation results, and required computation
resources. The dataset used in this study is cross-project data
of 760 heterogeneous projects. The size of the dataset is
smaller in CPDP studies (SMS, Appendix A) therefore it
does not require special training resources. The heterogeneity
of the projects requires avoiding methodological mistakes of
learning parameters of prediction function from a chunk of
data and applying it to the other chunk. This can cause higher
variability in the performance of training models based on
how data is split into chunks, and it also has a limitation
of using a chunk of data for testing which could have been
used for training as well. This reduces the generalization of a
training model and intends to perform accurately on training
data but cannot accurately predict based on yet unseen data
which is called overfitting. This problem can be avoided
through cross-validation. To implement cross-validation, the
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FIGURE 2. The heatmap of multicollinearity among all features.

predictive models are trained in three steps by dividing the
dataset into three subsets i.e., training data, validation data,
and test data. The training data is used to construct the
predictive model and validation data is used to fine-tune
the predictive model. The test set is then used to estimate
the performance of the predictive model [15]. N-fold cross-
validation is the approach to better estimate the performance
of ML algorithms. Using this approach, data is split into N
equal disjoint sets. N-1 sets (or folds) are used for training
of ML model and the nth set is used for testing. The data sets
for training and testing are different in each of the N iterations
[15]. We used 10-fold cross-validation for our classification
and regression experiments. This approach utilizes the whole
dataset for training and testing, and it reduces overfitting.

2) PERFORMANCE EVALUATION
Classification Measures: According to studies in the SMS,
precision, recall, and F1-Score are the most commonly used
measures for performance evaluation [6], [7], [12], [14], [33],

[34], [35], [36]. The possible outcomes of a prediction based
on amachine learning algorithm are evaluated using a number
of True Positive (TP), False Positive (FP), True Negative
(TN), and False Negative (FN) measures. The precision,
recall and are calculated with the help of TP and FP, and
F1-Score is calculated with the help of Precision and Recall
as given in (7) – (9).

Precision =
TP

TP+ FP
(7)

Recall =
TP

TP+ FN
(8)

F1 score =
2 × Precision× Recall
Precision+ Recall

(9)

According to Hosseini et al [7], the F1-score and area
under the curve (AUC) are the most used evaluation mea-
sures among CPDP studies. The ISBSG dataset like other
cross-project industrial datasets contains imbalance class
distributions.
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The choice of evaluation measures for a training model
is critical for understanding its performance. Precision mea-
sures the correctly classified defects among all the pre-
dictions that classify the product as defective as shown in
equation (7) above. The high precision means that actual
defects are accurately identified through the training model
and defect-finding resources will be correctly deployed. The
recall measures correctly classified defects concerning all the
actual defects (true positive cases) and wrongly classified
defects (false positive cases) in supervised learning as shown
in equation (8). It helps to maintain the quality of software
products because high recall means that there will be fewer
chances ofmissing a real defect. The F1-score is the harmonic
mean (H.M) of precision and recall as shown in equation (9).
An imbalanced dataset suffers from a disparity between the
number of positive and negative classes. The imbalanced
data causes training models to be biased towards a certain
class. The F1-score is suitable for evaluating the performance
of the training models on datasets with imbalanced class
distributions [8]. The F1-meaasure depicts a lower score if the
training model fails to detect a defect or incorrectly classifies
the defect.
Regression Measures: According to SMS, most studies

use Mean Squared Error (MSE) [36], Root Mean Squared
Error (RMSE) [6], [7], [14], [35], [36], and r-squared (R2)
[7] to evaluate regression results. MSE is based on the aver-
age squared difference between the predicted values and the
original values in the dataset. It measures how close a fitted
(regression) line is to actual data points. The smaller value
of MSE shows a better fit of the actual data set. RMSE is
the square root of MSE. The r-squared (R2) is also called
the coefficient of determination and it measures how well the
predicted values approximate the actual data points. Ideally, a
R2 value of 1 and an RMSE value of 0 represent that predicted
values are equal to actual data points.

MSE and RMSE estimated over n samples are defined
in equations (10) and (11), respectively.

MSE
(
y, ŷ

)
=

1
nsamples

∑nsample−1

i=0

(
y, ŷ

)2 (10)

RMSE
(
y, ŷ

)
=

√
MSE

(
y, ŷ

)
(11)

where: ŷ is the predicted value of the ith sample, and y is
the corresponding true value. R2 estimated over n samples
is defined in (12).

R2 = 1 −
SSResidual
SS total

(12)

SSResidual is the sum of squares of residuals defined in (13).

SSResidual =

∑n

i=0
(yi − (α̂ + β̂xi))

2
(13)

where α̂ is the estimated value of constant term α and β̂ is
the estimated value of coefficient β. xi is the ith value of
an independent variable. SS total in (14) describes how well
the regression model fits the training data. Its higher value

denotes that the regression model does not fit the training
data.

SS total
(
y, ŷ

)
=

∑n

i=1

(
yi − ŷ

)
(14)

Each of the evaluation measures provides an important
insight into the performance of the training model. The
MSE and RMSE are measured in the same units of the
target variable which supports direct interpretation of results.
Both measure the standard deviation among the differences
between actual and predicted values i.e., residuals. The MSE
takes a square of the residuals, whichmakes the interpretation
of the results difficult. Taking the square root of theMSE (i.e.,
RMSE) helps to normalize the results. RMSE is preferred
overMSEwhen comparing the performance ofmultiple train-
ing models. The large residuals will cause the RMSE value
away from its ideal value of 0. The R2 provides the goodness
of fit of a trainingmodel. It indicates howwell the variances in
the target variable are explained by the model. A higher value
of R2 (ideally close to 1) indicates that the training model has
learned patterns and relationships among independent and
dependent variables during the training phase. It indicates
how well the model might perform on the unseen data.

In summary, the RMSE provides insight into the accuracy
of the predictions and R2 explains how well the training
model adapts to the variance in the target variable. Therefore,
a combination of both is used to select the best training
models.

B. MACHINE LEARNING ALGORITHM SELECTION
The supervised machine learning algorithms are selected
based on the most commonly used and successful machine
learning approaches on CPDP datasets that are identified in
the SMS in Appendix A.

1) PARAMETER SETTING
The machine learning models are implemented using a
renowned machine learning API i.e., scikit-learn. The clas-
sical machine learning algorithms such as linear regression,
multivariable regression, logistic regression, decision tree,
support vector machine, and Naive Bayes are trained on
default settings. The K-NN model is trained after finding the
optimum value of a number of clusters. The hyper-parameter
tuning is performed for ensemble decision tree models
i.e., random forest and extra-tree classifiers. These settings
include the number of decision trees (100 to 1200), crite-
rion (‘gini’, ‘entropy’), the maximum number of tree levels
(5, 23), minimum number of samples required to split a node
(2, 5, 10, 15, and 100), minimum number of samples required
for leaf node (1, 2, 5, and 10). The multilayer perceptron
(ANN) model is also trained with multiple combinations
of the parameters and retained with the best performance.
These settings include activation functions (‘identity’, ‘logis-
tic’, ‘tanh’, ‘relu’), solver (‘lbfgs’, ‘sgd’, ‘adam’), learning
rate (0.1 to 0.5), number of neurons in the hidden layer (up
to 100), number of iterations (up to 200), kernel regularizer
(L2 penalty, alpha=0.0001).
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FIGURE 3. Performance of machine learning models using datasets and subsets.

C. RESULTS
The following sections present results and analysis of classi-
fication and regression tasks.

The complexity of a training model and its predictive
performance are considered in deciding the most suitable
machine learning model for CPDP. The simpler models due
to the smaller number of features containmore biases because
they do not process all the information of the complete
dataset. In addition, their adaptation to lower variance makes
them more vigorous to noisy data. However, simpler models
are prone to underfitting the training data. On the other hand,
complexmodelsmight become overfitting i.e., fitting toowell
on the training data and poor performance on unseen data.
These models tend to adapt to higher variance and miss-
ing underlying patterns among features in the training data.
To tackle the issue of underfitting and overfitting, we have
used N-fold cross-validation to train and test all chunks of
the dataset. In addition, we have used data transformations to
normalize the effect of data heterogeneity. Furthermore, more
than one evaluation measure is used to mitigate the bias in
evaluating the performance of training models. After taking
the aforementioned steps, the variations of simple to complex
models are also experimented with using a feature selection

process to select the best set of features to train the machine
learning model and predict DD.

1) CLASSIFICATION
This study has used the dataset inmultiple ways to predict DD
classes using 8 machine learning algorithms for identifying
the best set of metrics. The variations of the dataset include:

Original dataset:
• Original dataset containing all 23 metrics/features com-
bined. {1 dataset}.

• The original dataset is transformed into Logged values
of its features. {1 dataset}

• The original dataset is transformed into Z-score values
of its features. {1 dataset}

Subsets:
• Six feature selection methods are used to create sub-
sets of metrics/features from the original dataset.
{6 datasets}

• Each subset is transformed into Logged values of its
features. {6 dataset}

• Each subset is transformed into Z-score values of its
features. {6 dataset}
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FIGURE 4. Highest performances of multilayer perceptron and KNN classifier models using datasets and subsets with various feature selection
techniques.

Individual features:

• Each metric/feature is separately used to build machine
learning models. {23 metrics used as 23 datasets}.

• Values of each feature are transformed into Logged val-
ues. {23 dataset}

• Values of each feature are transformed into Z-score val-
ues. {23 dataset}

Due to space constraints, we havemade all results available
in Google Drive (Appendix B). The box plot in Figure 3
depicts the overall performance of machine learning algo-
rithms on the subsets and complete datasets. The datasets
are also transformed into logged values and z-score values to
normalize them. Multilayer Perceptron performed best with
an F1-score of 0.87 followed by the KNN classifier with an
F1-score of 0.80. Random Forest and Extra Trees classifiers
predicted the highest F1 score of 0.67.

Figure 4 depicts the performance of the top two models,
and it is evident that the Z-score transformation of the dataset
helped to train the model with the highest F1 score. Logged
transformation of 12 features extracted using chi-square fea-
ture selection helped to train the model with the second
highest F1-score of 0.80. This shows that data transforma-
tions and feature selection are useful on the dataset because
all the higher F1-scores are achieved using transformations
as compared to using original values as shown in Figure 3
and Figure 4. The box plot in Figure 5 presents the over-
all performance of machine learning models on individual
features.

TheKNN classifiermodel outperformed othermodels with
best highest F1-score of 0.77. All other machine learning
models mostly predicted DD around an F1-score of 0.50,
which is considered equal to random guessing [37]. KNN
classifier model has performed consistently over individual
features, complete dataset, and its subsets.

Figure 6 presents the best results of DD prediction by
training the KNN classifier model using individual features.

The features with an F1-score of 0.7 or above are presented.
The ‘functional size’ feature predicted DD with an F1-score
of 0.77 followed by ‘normalizedwork effort level 1’, ‘normal-
ized level 1 PDR (ufp)’, and ‘normalized work effort’ with
F1-scores of 0.75, 0.75, and 0.74, respectively.
Receiver Operating Characteristics (ROC): In this study,

the ISBSG dataset has 64 percent of projects classified as
non-defected which means that the dataset is skewed [38],
[39]. The Receiver Operating Characteristic (ROC) graph is
used to measure the algorithm’s performance being insensi-
tive to class skewness and unequal classification error costs.
The performance metrics (e.g. precision, recall, F1-score) are
based on confusion metrics and they are sensitive to class
skewness [15], [38], [39]. These performance metrics depend
on the distribution of instances in a dataset, for example,
faulty (e.g., positive) and non-faulty (e.g., negative) instances
for binary classification of defects.

The Multilayer Perceptron and KNN classifier models
predicted DD with their highest F1-score of 0.89 and
0.80 respectively. Therefore, we usedROC curves to visualize
their performance concerning the true positive rate and false
positive rate in Figure 7.
The Multilayer Perceptron algorithm has True-Negative

Rate = 45, False-Positive Rate = 10, False-Negative
Rate = 7, True-Positive Rate = 90, and area under the
curve (AUC) = 0.96. The KNN classifier model has a
True-Negative Rate = 37, False-Positive Rate = 18, False-
Negative Rate = 10, True-Positive Rate = 87, and area under
the curve (AUC) = 0.88. Both algorithms performed very
little sensitivity to skewness; however, Multilayer Perceptron
is a better predictor of DDbased on higher AUC and F1-score.

2) REGRESSION
Linear regression and multivariable regression are used to
predict DD using individual features and combined features
respectively.
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FIGURE 5. Performance of various machine learning models using individual features.

FIGURE 6. The F1-score of various KNN-based models using individual features.

Linear Regression: The individual features are evaluated
for their ability to predict DD using their original values,
logged values, and z-scores. The R2 and RMSE are used to
evaluate the performance of regression. The ideal values of
R2 and RMSE are 1 and 0, respectively.

Figure 8 represents the performance of linear regression
using original, logged, and z-score values of individual fea-
tures and DD features. The r-squared results of only those
features are presented which are closer to 1 (i.e., between the
range of 0.4 and 0.9). Logged feature values predicted DD
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FIGURE 7. The comparison between ROC curves of multilayer perceptron and KNN classifier.

FIGURE 8. The R-squared (R2) values of defect density prediction using individual features.

better than using z-score values of features. Original features
values of ‘Developement_Type’, ‘Client_Server’, ‘Develope-
ment_Platform’, ‘Language type’, ‘CASE tools used’, and
‘How_methodology_Acquired’ predicted logged values of
DD equally well as with all logged values. The logged values
of productivity and effort features (e.g., normalized_PDR,
effort_specify) predicted DD with r-squared values of more
than 0.8 which is close to the ideal value of 1.

Figure 9 represents the performance of linear regres-
sion in terms of RMSE by using original, logged, and
z-score values of individual features and DD features.
The RMSE results of only those features presented that
are closer to zero (i.e., between the range of 0 and
0.6). It is evident that the logged feature values pre-
dicted DD better than using z-score values of features.
Logged values of ‘Developement_Type’, ‘Client_Server’,
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FIGURE 9. The RMSE values defect density prediction using individual features.

FIGURE 10. Multivariable regression using multiple subsets of a complete dataset.

‘CASE tools used’, and ‘How_methodology_Acquired’
predicted logged values of DD equally well as with
only all logged values of DD. The logged values of

productivity and effort features (e.g., normalized_PDR,
effort_specify) predicted DD with RMSE values between 0.5
and 0.56.
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FIGURE 11. Higher results using multiple subsets of the complete dataset.

Overall, the features related to effort and productivity
of software development predicted DD best in terms of
r-squared and RMSE measures.
Multivariable Regression: This section presents results and

analysis of DD prediction using complete datasets and sub-
sets. Figure 10 represents RMSE and r-squared scores of
multivariable regressions on the subsets as discussed above.
Each subset and dataset are transformed in two ways i.e.,
either complete data is transformed or only DD (target)
feature is transformed. The best prediction performance is
achieved with the dataset that is reduced based on a statis-
tical filter of multicollinearity and transformed using logged
values as shown in Figure 10. Overall, logged transformations
on the datasets enabled the best scores of RMSE in the range
(0.4, 0.98) and r-squared values in the range (0.9, 15).

Figure 11 represents higher results of RMSE (i.e., closer
to 0) and r-squared (i.e., closer to 1). The best results (with
RMSE = 0.4 and r-squared = 0.9) are achieved based
on logged feature values of the complete dataset and a
multicollinearity-based reduced dataset of 11 features. The
logged subsets outperformed the subsets of original values
and z-score values. It shows the benefits of feature reduc-
tion and data transformations. The prediction of bugs in the
planning phase can help project managers make mitigation
strategies; however, fewer amounts of data are available for
prediction at the start of a project. In that case, requiring
three attributes that are related to available project time, the
architecture of the project, and the number of resources avail-
able can make prediction work convenient.

The VIF, BIC, and multicollinearity-based feature selec-
tion methods use the analysis of correlation coefficients
among independent variables in different ways. The simplest
way of finding multicollinearity among the independent vari-
ables is to find a pair-wise correlation among independent
variables and their correlation with the target variable as well.
The variables having a high correlation with other variables
and a lower correlation with the target variable are dropped.

The VIF score provides a more structured process of find-
ing multicollinearity as compared to the manual approach
because it processes the r-square values of predicting the tar-
get attribute. The BIC score is used to predict the best subset
of data that can predict the target variable and its criteria is to
process the number of parameters and coefficients of predic-
tion. The p-value is calculated by analyzing the coefficients
of the regression model through theWald test. This test is per-
formed with the help of dividing linear regression confidence
by its standard errors and later normalizing the results through
z-transformation. The P-value for each independent variable
informs its level of significance for predicting a dependent
variable. The P-value is the probability that the absolute value
of a feature is more extreme than the one calculated through
the Wald test.

In terms of predicting DD, the subsets of features selected
with P-value performed better than the ones selected based
on correlation. The fundamental difference between these
approaches is multicollinearity analyzes pair-wise correlation
coefficients among independent variables as well as with tar-
get variables to drop/keep a variable in a subset. The P-value
uses analysis of variance between each independent variable
and dependent variable. The analysis of trainingmodels using
RMSE and R2 supports a comprehensive analysis because the
residuals and the structure of training models are evaluated
through both measures.

IV. CONCLUSION
This study presented an empirical study on early defect
prediction to plan quality activities at the beginning of a
project to minimize costs of poor quality (that is both internal
and external failure costs). The results indicate that software
companies may utilize regression and classification-based
training models to predict post-deployment defects of a soft-
ware product at a reasonable accuracy by using the dataset.

The main contribution of this study is twofold: i) a system-
atic mapping study (SMS) on secondary studies (literature
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TABLE 6. Dataset construction for supervised learning (classification).

reviews) on CPDP (cross-project defect prediction) and ii) an
empirical study on early defects prediction using a publicly
available benchmarking dataset. In Table 6, we provide our
reflections on the findings of this study by comparing them
to the findings of recent SLR and meta-analysis on CPDP [7]
and SLR of Hall et al. [14].
In the future, we are planning to further extend the study

by exploring deep learning and transformer-based training
models to predict defects. The software development orga-
nization can use the findings of this study and predict their
defects by using the source code of training models in this

study. The source code is given in Appendix B. In addition,
the ISBSG cross-project dataset is further extendible through
the addition of their in-house project data.

APPENDIX A
SMS ON SECONDARY STUDIES
Here, we present a summary of our SMS on secondary
studies (i.e., literature reviews (LRs), systematic literature
reviews (SLRs), and SMSs) on defect prediction. These
studies reviewed in total of 509 defect prediction studies
published between 1990 and 2019. The research questions
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TABLE 7. Research questions of the SMS.

FIGURE 12. The selection process of secondary studies.

TABLE 8. Selection of studies.

(RQ) of this study are shown in Table 7. The key findings
of SMS are presented and compared with the results and
findings of this study in Section III.

A. SEARCH PROCESS
1) SEARCH STRING 1
(Literature review OR systematic review OR systematic liter-
ature reviewORSLRORSystematic mappingOR systematic
mapping study) AND (Defect OR Fault ORError ORFailure)
AND (Prediction OR estimation).

2) SEARCH STRING 2
‘ISBSG AND (Defect OR Fault OR Error OR Failure) AND
(Prediction OR estimation)’ and within the SLRs with an
objective to identify the use of the ISBSG dataset for defects
prediction. We did not find a study that used the ISBSG
dataset for defect predictions at a project level.

B. STUDY INCLUSION CRITERIA
We have selected LRs, SLRs, and SMSs on defect predictions
which are published in peer-reviewed journals. A study is

TABLE 9. The list of secondary studies included.

TABLE 10. Machine learning methods used in the list of secondary
studies included.

selected if it at least has an analysis of types of machine
learning algorithms, datasets, or metrics used in the defect
prediction studies.

C. SEARCHING ACTIVITIES
Figure 12 represents an overall process that is used for the
selection of secondary studies. First, we selected 20 studies
based on title, abstract, and conclusion for the complete
review and evaluated them according to inclusion criteria.
The complete review resulted in a selection of 9 studies. The
snowball tracking process identified 3 more studies.

1) SEARCH RESULTS
Table 8 represents the research databases, search results, and
the number of SLR, SMS, and LR studies selected after
applying the search string. Table 9 represents the title, cov-
erage time, and number of studies included.

D. RESULTS OF THE SMS
Table 10 presents the most used machine learning meth-
ods. Few studies explicitly mentioned the percentage of
machine learning methods used. In the other studies, we have
identified the most used algorithms based on the titles of
primary studies and overall discussion in the SLRs, LRs,
and SMSs. The methods mentioned against the Study IDs
in Table 10 are according to their frequency of use in the
research studies or frequency of appearance in the SLRs, LRs,
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TABLE 11. Most used defect prediction datasets and metrics for defect prediction.

TABLE 12. Description of dataset attributes/metrics.
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TABLE 13. Feature selection methods applied on the dataset for classification models.

TABLE 14. Feature selection methods applied on the dataset for regression models.

and SMSs. According to the findings, Bayesian Learners,
Regression, Random Forests, Decision Trees and Support
Vector Machines, Rule-based methods, and Artificial Neural
Networks are the most used methods.

Table 11 presents the most used CPDP datasets that
are publicly available and attributes/measures collected
about process, product, and resource entities. NASA MDP,
ECLIPSE, PROMISE, Mozilla, Apache, Jureczko, and Soft-
lab are found to be the most used. It is observed that
resource-related measures are the least used ones.

APPENDIX B
CODE AND RESULTS
The code and detailed results are available at
https://drive.google.com/drive/folders/174ER7vzZxw2on
DArqxl7yw2nFyEPkxAW?usp=sharing

APPENDIX C
DATASET ATTRIBUTES AND DETAILS
Table 12 lists the attributes or metrics’ description of the
dataset. Tables 13 and 14 present subsets of features selected
for classification and regression models.
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