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Abstract
Histone deacetylases are well-established target enzymes involved in the pathology of different diseases including cancer and 
neurodegenerative disorders. The approved HDAC inhibitor drugs are associated with cellular toxicities. Different phenolic 
compounds have been shown to possess inhibitory activities against HDACs and are, therefore, considered safer alterna-
tives to synthetic compounds. Here, we elucidated the binding mode and calculated the binding propensity of some of the 
top phenolic compounds against different isoforms representing different classes of  Zn2+ ion-containing HDACs using the 
molecular docking approach. Our data reaffirmed the activity of the studied phenolic compounds against HDACs. Binding 
interaction analysis suggested that these compounds can block the activity of HDACs with or without binding to the active 
site zinc metal ion. Furthermore, molecular dynamics (MD) simulations were carried out on the selected crystal and docking 
complexes of each selected HDAC isoform. Analysis of root-mean-square displacement (RMSD) showed that the phenolic 
compounds demonstrated a stable binding mode over 50 ns in a way that is comparable to the cocrystal ligands. Together, 
these findings can aid future efforts in the search for natural inhibitors of HDACs.
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Introduction

Histone deacetylase enzymes catalyze the removal of an 
acetyl group from an ε-N-acetyl lysine amino acid on a his-
tone. This allows the DNA to wrap around the histone tightly 
to prevent gene expression. HDACs are grouped into four 
classes based on phylogenetic analyses and sequence homol-
ogies with the yeast proteins. Class I HDACs (1, 2, 3 and 8) 
share sequence homology with yeast Rpd3, Hos1, and Hos2. 
Class IIa HDACs (4, 5, 7 and 9) and Class IIb (HDACs 6 
and 10) share similar sequences with yeast HDA1 and Hos3. 

Class III are sirtuins (1–7), and class IV HDAC11. Classes 
I, II, and IV are zinc-dependent, whereas class III members 
are nicotinamide adenine dinucleotide (NAD)-containing 
enzymes (Milazzo et al. 2020). Therefore, this study focuses 
on classes I, II, and IV.

Class I HDACs are homologous to the yeast HDAC Rpd3 
and harbor a more conserved deacetylase domain compared 
with other classes, are ubiquitously expressed, and are pre-
dominantly located in the nucleus, where they act on his-
tones (Watson et al. 2012). Class I HDACs also act as cata-
lytic subunits with corepressor complexes to repress gene 
expression. For example, HDACs 1 and 2 form a complex 
with the nucleosome remodeling and deacetylase complex 
(NuRD) (Bornelöv et al. 2018), transcriptional regulatory 
protein Sin3A (Saunders et  al. 2017), a corepressor of 
REST (CoREST) (You et al. 2001), and the mitotic dea-
cetylase complex (MiDAC) (Milazzo et al. 2020). HDAC3 is 
recruited to the SMRT/N-CoR corepressor complex (Guen-
ther et al. 2001). However, HDAC8 functions alone without 
forming a large complex (Hu et al. 2000).

Class II HDACs share high sequence similarity with 
yeast HDA1, with a conserved deacetylase domain at their 

Handling editor: Sébastien Albrecht.

 * Abdullahi Ibrahim Uba 
 abdullahi.iu2@gmail.com

 * Gokhan Zengin 
 gokhanzengin@selcuk.edu.tr

1 Department of Molecular Biology and Genetics, Istanbul 
AREL University, 34537 Istanbul, Turkey

2 Department of Biology, Science Faculty, Selcuk University, 
42130 Konya, Turkey

http://crossmark.crossref.org/dialog/?doi=10.1007/s00726-023-03249-6&domain=pdf
http://orcid.org/0000-0002-0853-108X
http://orcid.org/0000-0001-6548-7823


 A. I. Uba, G. Zengin 

1 3

C-terminus. Class IIa HDACs (HDAC4, 5, 7 and 9) harbor 
a unique adapter domain in the N-terminus which serves 
as a docking site of the DNA-binding transcription factor 
MEF2 (Muslin 2000). Class IIa HDACs have also been 
shown to interact with the SMRT/N-CoR-HDAC3 com-
plex (Hudson et al. 2015). The highly conserved active site 
tyrosine residue in class I HDACs is replaced with histidine 
in class IIa HDACs. Consequently, class IIa demonstrates 
lower enzymatic activity compared with class I HDACs. 
The catalytic domains of class II HDACs harbor another 
zinc ion-binding site referred to as the structural zinc ion-
binding subdomain. Many of the class IIa-specific residues 
are found in this structural zinc ion-binding site and at the 
entry site to the catalytic site (Park and Kim 2020). Class 
IIb HDACs (HDAC6 and 10) have a characteristic extension 
(tail domain) at the C-terminus. HDAC6 contains two dea-
cetylase domains (CD1 and CD2) and a C-terminal zinc fin-
ger ubiquitin-binding domain (Zhang et al. 2006). HDAC10 
has only one deacetylase domain and a leucine-rich repeat 
domain at its C-terminus (Hai et al. 2017). Both HDACs 6 
and HDAC10 are typically found in the cytoplasm. HDAC6 
acts on nonhistone proteins to regulate important cellular 
processes. For example, HDAC6 deacetylates α-tubulin to 
control the microtubule dynamics; acts on chaperones, cort-
actin, and IFNαR; and plays regulatory roles in autophagy 
as well as hepatic metabolism (Li et al. 2012). Class IV only 
member HDAC11, is predominantly expressed in the brain, 
heart, kidneys, testis, and skeletal muscles, and is localized 
in the nucleus (Gao et al. 2002). HDAC11 shares structural 
similarities with both classes I and II HDACs, harboring 
a catalytic domain containing 268 amino acid residues. 
HDAC11 is a multifaceted enzyme with a very efficient 
long-chain fatty acid deacylase activity. This isoform has 
been shown to have preference for removing long-acyl rather 
than acetyl groups (Moreno-Yruela et al. 2018).

HDACs play vital roles in the cell and disruption of 
their normal functions leads to different cellular patho-
genesis including cancers and neurodegenerative diseases 
(Shukla and Tekwani 2020; Volmar and Wahlestedt 2015; 
Simões-Pires et al. 2013). For instance, overexpression of 
both classes I and II HDACs in a variety of cancers has 
been comprehensively reviewed (Wang et al. 2020; Alsek-
sek et al. 2022; Pant et al. 2020; Li and Seto 2016). So far, 
most clinically effective HDAC inhibitors have demon-
strated good outcomes against hematological neoplasms 
(T-cell lymphomas and multiple myeloma (MM)). To date, 
5 HDAC inhibitors have been approved by the FDA for the 
treatment of cancers: vorinostat, belinostat, romidepsin, 
tucidinostat, and panobinostat. Details about their structures 
(hydroxamic acid and nonhydroxamic acid) and efficacy on 
specific cancer types have been comprehensively reviewed 
by Bondarev et al. (2021). These drugs are nonselective and 
thus show adverse effects. In search of potential selective 

molecular scaffolds that could be further optimized, several 
computer-aided drug design approaches were successfully 
applied, including structure-based (Uba and YelekÇİ 2017; 
Ibrahim Uba and Yelekçi 2019; Uba and Yelekçi 2017, 
2018a) and ligand-based virtual screenings (Uba and Yele-
kçi 2018b). Also, several compounds of natural origin have 
demonstrated HDAC inhibition properties. For example, tri-
chostatin A (TSA), originally extracted from Streptomyces 
hygroscopicus, possesses potent HDAC inhibitory activity. 
TSA can trigger cell differentiation and induces cell cycle 
arrest in both normal and cancer cells together via HDAC 
inhibition (Tsuji et al. 1976). Other examples of HDAC 
inhibitors from natural sources include spiruchostatin A, 
largazole, burkholdac A, lycorine, and many more (Losson 
et al. 2016). Moreover, phenolic compounds such as caffeic 
acid, p-coumaric acid, and ferulic acid have been shown 
to protect the heart via HDAC inhibition (Roy and Stanely 
Mainzen Prince 2013; Panda et al. 2016; Wang et al. 2013). 
In another study, a series of phenolic compounds including 
quercetin, kaempferol, luteolin, and chlorogenic acid were 
reported to show strong activity against HDAC8 (Shimizu 
and Mira 2015). Also, a computational study showed the 
binding propensity of apigenin and luteolin against class I 
HDAC isoforms and concluded that these compounds may 
replace synthetic HDAC inhibitors for cancer treatment 
(Ganai et al. 2018). Recently, molecular docking was used to 
demonstrate the binding of flavones (flavone, apigenin, and 
luteolin) to HDACs 1 and 2. Interestingly, findings from the 
study cited above showed that these compounds mimic the 
binding of an existing HDAC inhibitor vorinostat (Scafuri 
et al. 2020). Here, to gain more insights into their binding 
behavior, more phenolic compounds were docked into the 
active sites of some selected HDACs representing each class 
of zinc ion-containing HDACs and molecular dynamics sim-
ulations were carried out to examine the stability of their 
binding mode over time.

Materials and methods

Protein preparation

The following crystal structures of selected HDAC isoforms 
complexed with different ligands were retrieved from the 
protein data bank (PDB) (https:// www. rcsb. org/): HDAC1 
(PDB ID: 5ICN) (Watson et al. 2016), HDAC8 (PDB ID: 
5FCW) (Tabackman et al. 2016), HDAC4 (PDB ID: 2VQQ) 
(Bottomley et al. 2008), HDAC6 (PDB ID: 5EDU) (Hai and 
Christianson 2016). In the absence of the crystal structure 
of human HDAC10, the homology-modeled structure built 
previously by our group (Ibrahim Uba and Yelekçi 2019) 
was also retrieved. Water molecules and non-interacting ions 
were removed. The binding coordinates of each inhibitor in 
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the respective protein structure were recorded before remov-
ing the cocrystal ligands. To prepare the protein structures 
for molecular docking, the pKa of titratable residues in each 
protein was predicted using the “Playmolecule ProteinPre-
pare” module (Martínez-Rosell et al. 2017) and was then 
used to prepare the proteins at physiological pH of 7.4.

The 3D structures of selected ligands were downloaded 
from the PubChem database (https:// pubch em. ncbi. nlm. nih. 
gov/) and their geometry was optimized using Frog2 (Miteva 
et al. 2010).

Molecular docking

A series of phenolic compounds were docked into the active 
sites of selected HDAC isoforms. In addition, each cocrys-
tal ligand was redocked into its cognate protein to validate 
AutoDock’s binding pose prediction accuracy. The docking 
input grid file was prepared using AutoDockTools 1.5.6, fol-
lowed by docking using AutoDock 4.2.6 (https:// autod ock. 
scrip ts. edu) (Morris et al. 2009). During the process, the 
energy grid box of dimensions 55, 55, and 55 Å for HDACs 
1, 4, and 8; 65, 65, 65 Å for HDAC6, and 60, 60, 60 Å for 
HDAC10. These parameters were chosen according to the 
size of the binding pocket of each isoform. The Lamarck-
ian genetic algorithm was used for ligand conformational 
search. For each compound, 20 independent runs were 
performed, and the distinct ligand conformers were gener-
ated and docked randomly into the binding pocket of these 
enzymes. The program randomly assigned torsion angles to 
rotatable bonds, and energy valuation was set to 20,000,000. 
The binding energy of each ligand pose was calculated, and 
protein–ligand interactions were visualized using Biovia 
Discovery Studio Visualizer 4.5.

Molecular dynamics simulation

To examine the stability of ligand-binding mode, molecular 
dynamics (MD) simulations were carried out on the follow-
ing complexes: crystal structure of HDAC1 complexed with 
a novel peptide inhibitor (PDB ID: 5ICN), docking com-
plex of HDAC1 with rutin; crystal structure of HDAC8 in 
complex with hydroxamic acid-based inhibitor (PDB ID: 
5FCW), docking complex of HDAC8 with quercetin; crystal 
structure of HDAC4 in complex with trifluoromethylketone 
inhibitor (PDB ID: 2VQQ), docking complex of HDAC4 
with chlorogenic acid, crystal structure of HDAC6 in com-
plex with trichostatin A (PDB ID: 5EDU), docking com-
plex of HDAC6 with chlorogenic acid; unbound homology-
modeled structure of HDAC10, and its docking complex 
with gallic acid were generated using the CHARMM-GUI 
server, employing the CHARMM36 force field (http:// 
www. charmm- gui. org/) (Lee et al. 2015). Ligands were 
parameterized using the CHARMM General Force Field 

(CGenFF) (https:// cgenff. param chem. org/). All the systems 
were solvated using the TIP3 water model and neutralized 
with NaCl to the ionic concentration of 0.2 M. All simula-
tions were carried out using NAMD software (Phillips et al. 
2005). The energy of each system was minimized for 50 ps 
by the steepest descent method and then equilibrated for 5 ns 
in standard number of particles, volume, temperature (NVT) 
ensemble. Finally, 50 ns-long production MD simulation 
runs were performed in standard number of particles, pres-
sure, temperature (NPT) ensemble on each system. During 
the production run, the time step and collection interval were 
set to 2 fs and 50 ps, respectively. To examine the stability 
of ligand-binding mode, the root-mean-square displacement 
(RMSD) profiles of each system was computed over time, 
and crystal and docking complexes were compared.

Results and discussion

Predicted binding affinity corroborates 
experimental data

To get insights into the binding affinity of the phenolic 
compounds, binding energy (BE) scores were estimated 
(Table 1). All compounds were found to be HDAC bind-
ers as they showed a calculated BE ranging from − 5.31 to 
− 12.27 kcal/mol. Hence, they can all be said to be HDAC 
binders. It is interesting to note that curcumin showed a 
potential preference for HDAC8 while the rest of the com-
pounds did not show potential selectivity neither for a spe-
cific HDAC isoform or a particular Class of HDAC.

Apigenin showed a lower BE score against HDAC8 
(− 8.22 kcal/mol) compared with the rest of the study iso-
forms (> − 8.00 kcal/mol), while luteolin exhibited high 
binding propensity against HDACs 4, 6, 8, and 10 with 
respective BE values − 8.67, − 10.31, − 9.99, − 8.37 kcal/
mol. Apigenin and luteolin displayed cancer cell growth 
inhibitory responses through the inhibition of class I HDACs 
(Pandey et al. 2012; Ganai et al. 2018). In another study, api-
genin exhibited strong anticancer activity against non-small 
cell lung cancer cells through HDAC1 inhibition (Yan et al. 
2020). Also, a recent computational study aiming at under-
standing the interaction between flavones and HDACs 1 and 
2 showed that apigenin and luteolin bound to these HDACs 
well (Scafuri et al. 2020). Caffeic acid displayed strong 
binding to class I and IIb HDACs (BE ≤ − 9.00 kcal/mol). 
Caffeic acid and its derivatives have been known to have 
strong HDAC inhibitory activities (Bora-Tatar et al. 2009). 
The binding energy scores of chlorogenic acid are − 9.67, 
− 9.94, and − 11.50 kcal/mol for HDACs 4, 6, and 10. Chlo-
rogenic acid has been shown to inhibit the growth of non-
small cells through the inhibition of HDAC6 (Hongtao et al. 
2018). Curcumin showed a potential preference for HDAC8, 

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://autodock.scripts.edu
https://autodock.scripts.edu
http://www.charmm-gui.org/
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with affinity (BE = − 8.50 kcal/mol) compared to the other 
studied isoforms. The HDAC inhibitory activity of curcumin 
in various cancer cells including B-NHL cell Raji cell lines 
(Chen et al. 2007; Liu et al. 2005), medulloblastoma (Lee 
et al. 2011), and human lung cancer cell line (Namwan et al. 
2022). Gallic acid demonstrated good binding propensity 
against all the study HDAC isoforms (HDAC1: − 7.60 kcal/
mol, HDAC8: − 9.46 kcal/mol, HDAC4: − 8.71 kcal/mol, 
HDAC6: − 9.91 kcal/mol, and HDAC10: − 9.59 kcal/mol). 
Gallic acid slowed the progression of prostate cancer via 
inhibition of HDACs 1 and 2 (Jang et al. 2020). Interest-
ingly, our docking study found that kaempferol possessed 
good inhibitory potential against all the study HDACs, with 
the strongest binding to HDAC8 (BE = − 9.43 kcal/mol). 
Consistently, in vitro profiling of zinc-containing human 
HDACs (classes I, II, and IV) revealed that kaempferol 
inhibited all the tested HDACs in human-derived hepatoma 
cell lines HepG2 and Hep3B; as well as HCT-116 colon can-
cer cells (Berger et al. 2013). Also, naringenin showed good 
binding potential against all the selected HDAC isoforms. 
Even though we have not found data on naringenin directly 
showing the activity of the compound on HDACs, its deriva-
tives, 6- and 8-Prenylnaringenin demonstrated strong anti-
tumor activity against melanoma through HDAC inhibition 
(Venturelli et al. 2018). It is also interesting to note that 
our molecular docking prediction, p-hydroxybenzoic acid 
displayed the highest binding propensity against HDAC6. In 

agreement with our data, p-hydroxybenzoic acid was shown 
to exhibit strong HDAC6 inhibition properties, modulating 
the microtubular structure and HSP90α chaperone activity 
in prostate cancer (Seidel et al. 2016). p-Hydroxybenzoic 
also showed HDAC6-specific inhibition which resulted in 
the enhancement of breast cancer sensitivity to Adriamy-
cin (Wang et al. 2018). Polyphenol quercetin was reported 
to demonstrate in vitro HDAC8 inhibition and anticancer 
effects against colorectal cancer (Biswas et al. 2018). In 
agreement with the results from the study cited above, our 
docking calculations revealed quercetin to have the strongest 
binding to HDAC8 (BE = − 10.77 kcal/mol).

Furthermore, based on the BE cut-off values 
of ≤ − 8.00 kcal/mol, resveratrol, rutin and rosmarinic acid 
were found to demonstrate high inhibitory potential against 
all study HDAC isoforms, with rutin displaying the strong-
est binding. Resveratrol has been shown experimentally to 
have pan HDAC inhibitory activity on different solid tumors 
including hepatoblastoma (Gaetano et al. 2013), renal cell 
carcinoma (Dai et al. 2020), and prostate cancer (Dhar et al. 
2015). Rutin, a natural flavonoid, inhibited HDAC6 activ-
ity and significantly increases α‐tubulin acetylation level in 
motor neuron‐like cells (Cetin et al. 2022). Rosmarinic acid 
induced cell cycle arrest and apoptosis via modulation of 
HDAC2 expression in prostate cancer (Jang et al. 2018). 
Note that even though our docking calculations showed 
that catechin, hyperoside bound to the study HDACs, to 

Table 1  Binding energy 
(docking) scores of selected 
phenolic compounds against 
selected members of different 
classes of HDACs

Class I (1, 2, 3 and 8): representative members HDACs 1&8
Class IIa (4, 5, 7 and 9): representative member HDAC4
Class IIb (6 and 10): representative members HDACs 6 and 10
Class IV (11): no PDB structure, and no reliable template available for modeling

Compound Binding energy (kcal/mol)

Rep. Class I Rep. Class IIa Class IIb

HDAC1 HDAC8 HDAC4 HDAC6 HDAC10

Apigenin − 7.68 − 8.22 − 7.83 − 7.24 − 7.15
Caffeic acid − 9.03 − 9.06 − 7.98 − 9.62 − 9.36
Catechin − 6.00 − 9.80 − 8.67 − 7.06 − 8.42
Chlorogenic acid − 6.13 − 9.94 − 9.67 − 11.50 − 7.79
Curcumin − 6.53 − 5.09 − 8.50 − 5.31 − 6.24
Gallic acid − 7.60 − 9.46 − 8.71 − 9.91 − 9.59
Hyperoside − 11.58 − 9.82 − 8.31 − 7.21 − 7.87
Kaempferol − 7.68 − 9.43 − 9.34 − 7.13 − 8.57
Luteolin − 6.89 − 9.99 − 8.67 − 10.31 − 8.37
Naringenin − 7.61 − 8.20 − 7.59 − 8.08 − 8.52
p-hydroxybenzoic acid − 7.22 − 8.23 − 7.48 − 8.99 − 8.82
Quercetin − 6.14 − 10.77 − 9.33 − 10.60 − 9.09
Resveratrol − 8.68 − 8.72 − 8.20 − 8.45 − 8.12
Rosmarinic acid − 10.66 − 10.47 − 10.05 − 11.76 − 8.76
Rutin − 9.66 − 12.27 − 12.05 − 8.34 − 9.99
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the best of our knowledge, no experimental data suggesting 
their inhibitory activity against HDACs were found in the 
literature.

Catalytic mechanism of HDACs

Using HDAC8 enzyme, Lombardi et al. (2011) proposed 
that  Zn2+ ion and the catalytically essential residue His143 
promote the nucleophilic attack on zinc-bound water thereby 
making the nucleophilic lone electron pair available. The 
resulting oxyanion of the tetrahedral intermediate and its 
flanking transition states are stabilized by zinc coordination, 
as well as hydrogen bond interactions with Tyr306, His143, 
and two adjacent histidine residues His142, His143. These 
residues serve as a general acid catalyst in a “charge-relay” 
system to facilitate the collapse of the tetrahedral intermedi-
ate to form acetate and L-lysine on proton transfer, thought 
to be mediated by His143. The catalytic functions of His142 
and His143 are influenced by H-bonding with Asp176 and 
Asp183, respectively (Lombardi et al. 2011).

Protein–ligand interaction

HDAC1‑ligand interaction

Theπ crystal structure of HDAC1 in complex with a novel 
peptide inhibitor (PDB ID: 5ICN) revealed that the peptide 
ligand bound the enzyme with a typical cap-linker-chelator 
pharmacophore model. The cyclic part of the peptide occu-
pied the wide entrance to the pocket, the extended region 
spanned the catalytic channel, and the C-terminal carboxyl 
group engaged the active site  Zn2+ ion in metal-acceptor 
interaction. The peptide also interacted with catalytically 
essential residues His140, His141, Tyr303 via H-bonds. 
Other interactions formed include several van der Waals 
interactions and a couple of hydrophobic interactions 
(Fig. 1A).

Rutin formed several van der Waals interactions, includ-
ing those with the catalytically essential amino acid residues 
His141, Tyr303; and H-bonds with Cys100, Ser148, and 
Gly149 via multiple hydroxyl groups. In addition, a cou-
ple of π-anion interactions with Asp99 and a π-π stacked 
interaction with Phe205 were formed. However, the  Zn2+ 
ion was involved in van der Waals interaction (Fig. 1B). 
Similarly, rosmarinic acid engaged His141, Tyr303,  Zn2+ 
ion and several active site residues in van der Waals inter-
actions. It also formed H-bonds with Glu98, Asp99, and 
Gly149; π-π stacked interactions with Ph150 and Phe205 
(Fig. 1C). The interaction between HDAC1 and other top 
compounds in terms of docking fitting scores for hypero-
side, resveratrol, apigenin, and caffeic acid are similar to 
those described above (Figure S1). These interactions may 

be enough to inhibit the activity of the enzyme (Porter and 
Christianson 2019).

HDAC8‑ligand interaction

The crystal ligand interacted with catalytically essential 
residues including the adjacent His142 and His143, and 
Tyr306 via H-bonds. However, the  Zn2+ ion was engaged in 
van der Waals interaction (Fig. 2A). To validate our dock-
ing approach, the cocrystal ligand, hydroxamic acid-based 
inhibitor 4-naphthalen-1-yl- ~ (Uba and YelekÇİ)-oxidanyl-
benzamide, was redocked into the active site of HDAC8. 
The RMSD between the cocrystal pose (grey) and docking 
poses was found to be 1.34 Å, indicating predictive ability of 
our docking method. The docking pose also interacted with 
His142 and Asp178 via H-bonds. However, the hydroxamic 
acid group interacted with His143 and Tyr306 via van der 
Waals interactions. Interestingly, the  Zn2+ ion was engaged 
in metal-acceptor interaction (Fig.  2B). Also, both the 
crystal and docking poses formed π-π stacked interactions 
with Phe152, Phe208, and His180. In a similar manner, 
quercetin engaged the active site  Zn2+ ion of HDAC8 via 
metal-acceptor interaction, and formed π-π stacked interac-
tions with Phe152, Phe208, and His180. However, His142, 
His143, Tyr306 and more active site residues were engaged 
in van der Waals interaction with quercetin (Fig. 2C). There-
fore, quercetin demonstrated similar binding mode to the 
linkerless hydroxamic acid-based inhibitor. Our previous 
computational study suggested that modifications around 
quercetin scaffold yielded potential HDAC inhibitors (Uba 
and YelekÇİ 2017). Other top compounds that interacted 
strongly with HDAC8 include rutin, rosmarinic acid, luteo-
lin, and chlorogenic acid (Figure S2).

HDAC4‑ligand interaction

The experimental binding mode of trifluoromethylketone 
inhibitor was visualized. The cocrystal ligand bound to 
HDAC4 through coordination with  Zn2+ ion via diol group. 
The catalytic amino acid residues His158 and His159 are 
both engaged in H-bonds via hydroxyl from diol group. 
Also, His158, His159, Gly167, and Asp196 were involved 
in halogen interactions with trifluoryl substituent. Other 
interactions observed include π-sulfur interactions between 
the thiophene ring and Phe167 and His198, a π-π stacked 
interaction with Phe227, and a couple of van der Waals 
interactions all over the active site (Fig. 3A).

The docking pose was superimposed with the cocrystal 
pose with RMSD 1.35 Å even though the binding mode and 
orientation of the two ligand poses were almost the same 
(Fig. 3B). Like with the cocrystal pose, the docking pose 
formed a metal-acceptor interaction with  Zn2+ ion via diol 
group, an H-bond with His158, halogen interactions with 
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Fig. 1  A Crystal structure of HDAC1 complexed with a novel peptide inhibitor (PDB ID: 5ICN). B Docking poses and interaction of HDAC1 
with rutin. C Docking pose and interaction of HDAC1 with rosmarinic acid
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Fig. 2  Crystal structure of HDAC8 in complex with hydroxamic acid-based inhibitor (PDB ID: 5FCW). A Docking pose and interaction of 
hydroxamic acid-based inhibitor with HDAC8. B Docking pose and interaction of quercetin with HDAC8
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Fig. 3  A Crystal structure of HDAC4 in complex with trifluoromethylketone inhibitor (PDB ID: 2VQQ). B Docking pose and interaction of trif-
luoromethylketone inhibitor with HDAC4 (C) Docking pose and interaction of chlorogenic acid with HDAC4
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His158 and His159 via trifluoryl substituent, and a π-sulfur 
interactions between the thiophene ring with His198. Other 
different interactions formed include a π-π stacked interac-
tion between the thiophene ring of the ligand and His198, a 
couple of hydrophobic interactions near the entrance to the 
active site channel and few van der Waals interactions deep 
inside (Fig. 3B).

Chlorogenic acid occupied the active site of HDAC4 
by forming different interactions including a H-bond with 
catalytic residue His158 and a van der Waals interaction 
with His159. Other interactions formed comprised H-bonds 
with Asp196 and Gly331 deep inside the catalytic channel, 
a π-π stacked interaction near the entrance to the pocket, 
and several van der Waals interactions all over the tunnel. 
Other compounds that demonstrated strong interactions with 
HDAC4 include rutin, kaempferol, rosmarinic acid, and 
quercetin (Figure S3). These interactions are likely to block 
the activity of the enzyme competitively (Tilekar et al. 2021) 
or allosterically by making it unavailable for interaction with 
other partners (Jayathilaka et al. 2012).

HDAC6‑ligand interaction

The cocrystal ligand TSA, is a natural compound with potent 
inhibitory activity against class I and II HDACs (Sekhavat 
et al. 2007). TSA was bound to HDAC6 by forming strong 
coordination with  Zn2+ ion via hydroxamic acid group. TSA 
also engaged a catalytic residue Tyr782 in H-bond interac-
tion. Other interactions include van der Waals interaction 
with catalytic histidine residue His611 and several resi-
dues, π-sigma interactions with Phe620 and Phe680, and a 
hydrophobic interaction with Pro501 (Fig. 4A). The dock-
ing pose of TSA in HDAC6 active site is slightly different 
from the cocrystal pose, with RMSD of 1.92 Å. Similarly, in 
the docking pose, TSA engaged  Zn2+ ion in metal-acceptor 
interaction via hydroxamic group, and formed an H-bond 
with catalytic His782, and a van der Waals interaction with 
His611. Other interactions include hydrophobic contacts 
with Phe620 and Pro501 and a few van der Waals interac-
tions (Fig. 4B).

Although chlorogenic acid did not engage  Zn2+ ion in 
any interaction, it formed van der Waals interactions with 
catalytic residues His610, His611, and Tyr782, as well as 
with other residues lining the active site. Other interactions 
include π-π stacked interactions with Phe620 and His651 
deep inside the tunnel (Fig. 4C). Therefore, chlorogenic 
acid likely inhibits the activity of HDAC6 through these 
interactions since chlorogenic acid showed strong activity 
against non-small cell lung cancer through HDAC6 inhibi-
tion (Hongtao et al. 2018). Other compounds with strong 

binding to HDAC6 include rosmarinic acid, quercetin, luteo-
lin, and gallic acid (Figure S4).

HDAC10‑ligand interaction

The homology model of HDAC10 built using the crystal 
structure of Danio rerio (zebrafish) (PDB ID: 5TD7) was 
retrieved from our previous work (Ibrahim Uba and Yelekçi 
2019). Docking analysis revealed that gallic acid and caf-
feic acid bound to HDAC10 in a similar mode. The two 
relatively smaller compounds, compared to classical HDAC 
inhibitors such as vorinostat, bound to HDAC10 such that 
their carbonyl group coordinated with  Zn2+ ion via metal-
acceptor interaction (Fig. 5). In addition, both gallic acid and 
caffeic acid were completely buried in the catalytic cavity 
of HDAC10, forming interaction with catalytically essen-
tial residues and the residue Glu272. Interestingly, rutin, 
p-hydroxybenzoic acid, quercetin, and rosmarinic acid also 
formed a H-bond with Glu272 (Figure S5). Glu272 is con-
sidered as a “gate keeper” residue responsible for potent 
HDAC10 binding (Géraldy et al. 2019).

Molecular dynamics simulation

MD simulations were carried out to evaluate the ligand-
binding mode. Root-mean-square displacement (RMSD) 
was used a measure of structural stability, which is affected 
by ligand binding (Weako et al. 2020). The RMSD of the 
crystal structure of HDAC1 complexed with a novel pep-
tide inhibitor (PDB ID: 5ICN) rose sharply to about 2.5 Å 
around 10 ns, and then converged between 2.0 and 2.6 Å 
until the end of the simulation. Similarly, the docking com-
plex of HDAC1 with rutin reached an initial peak of about 
2.0 Å quite earlier (around 4 ns), stabilized between 1.5 
and 1.7 Å until around 35 ns, then increased and converged 
between 2.2 and 2.6 Å (Fig. 6A). While the crystal structure 
of HDAC8 in complex with hydroxamic acid-based inhibitor 
(PDB ID: 5FCW) reached RMSD convergence (between 1.3 
and 1.7 Å) beyond 40 ns, the docking complex of HDAC8 
with quercetin demonstrated a slightly higher RMSD trend, 
which beyond 42  ns, stabilized between 2.3 and 2.5  Å 
(Fig. 6B). The crystal structure of HDAC4 in complex with 
trifluoromethylketone inhibitor (PDB ID: 2VQQ) and the 
docking complex of HDAC4 with chlorogenic acid showed 
similar RMSD trends for the first 13 ns, the latter then 
slightly dropped and stabilized under 2.0 Å, while the former 
stabilized between 1.9 and 2.4 Å (Fig. 6C). Interestingly, the 
RMSDs of the crystal structure of HDAC6 in complex with 
trichostatin A (PDB ID: 5EDU) and the docking complex of 
HDAC6 with chlorogenic acid converged below 2.0 Å and 
synchronized beyond 10 ns until the end of the simulation 
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Fig. 4  A Crystal structure of HDAC6 in complex with trichostatin A (PDB ID: 5EDU). B Docking pose and interaction of trichostatin A with 
HDAC6. C Docking pose and interaction of quercetin with HDAC6
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(Fig. 6D). Finally, the unbound homology-modeled struc-
ture of HDAC10 and its docking complex with gallic acid 
showed higher but stable RMSD profiles (Fig. 6E). Similar 
trends were observed with the model and its complexes in 
our previous study (Ibrahim Uba and Yelekçi 2019; Uba and 
Yelekçi 2019).

Taken together, this study showed that phenolic com-
pounds bind to different HDAC isoforms via interaction with 
catalytically essential residues with or without binding to the 
active site  Zn2+ ion, corroborating with the results of several 
studies reporting the activity of these natural compounds 
against different HDACs. Furthermore, the some selected 

Fig. 5  A Docking pose and interaction of gallic acid with HDAC10 (human model) B Docking pose and interaction of caffeic acid with 
HDAC10 (human model)
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phenolic compounds showed a stable binding mode over 
50 ns MD simulations.

Conclusion

Different phenolic compounds have been shown to possess 

Fig. 6  Molecular dynamics simulation: root-mean square displace-
ment (RMSD) profiles over 50  ns period. A Crystal structure of 
HDAC1 complexed with a novel peptide inhibitor (PDB ID: 5ICN) 
versus docking complex of HDAC1 with rutin. B Crystal structure 
of HDAC8 in complex with hydroxamic acid-based inhibitor (PDB 
ID: 5FCW) versus docking complex of HDAC8 with quercetin. C 

Crystal structure of HDAC4 in complex with trifluoromethylketone 
inhibitor (PDB ID: 2VQQ) versus docking complex of HDAC4 with 
chlorogenic acid. D Crystal structure of HDAC6 in complex with 
trichostatin A (PDB ID: 5EDU) versus docking complex of HDAC6 
with chlorogenic acid. E Unbound homology-modeled structure of 
HDAC10 versus its docking complex with gallic acid
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inhibitory activities against HDACs and are, therefore, con-
sidered safer alternatives to synthetic compounds. Here, 
we elucidated the binding mode and predicted the binding 
propensity of some of the top phenolic compounds against 
different isoforms representing different classes of HDACs 
using molecular docking approach. Our data reaffirmed the 
activity of the study phenolic compounds against HDACs. 
Also, binding interaction analysis suggests that these com-
pounds can block the activity of HDACs with or without 
binding to the active site zinc metal ion. Furthermore, 
MD simulation examined binding mode stability of some 
selected phenolic compounds in the active site of the studied 
HDAC isoforms.
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