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Abstract

The relations between the antennas' geometrical parameters and design specifi-
cations usually consist of linear and nonlinear components. Especially with the
increase of the requested performance measures, the design procedure becomes
much more complex due to the conflicting performance criteria or design
limitations. To achieve a design with high performance with feasible design
parameters, a fast, accurate, and reliable design optimization process is required.
Herein, to have a fast, accurate, and high-performance capacitive-feed antenna
model to be used in design optimization problems, a modified multi-layer
perceptron (M2LP) model has been proposed. The M2LP is an equivalent con-
volutional neural network (CNN) model of a standard multilayer perceptron
(MLP), where instead of traditional training parameters of MLP, more advanced
training parameters of CNN models such as batch-norm layer, leaky-rectified
linear unit (ReLU) layer, and Adam training algorithm had been used. Further-
more, the M2LP model had been used in a design optimization process and the
obtained optimal antenna had been prototyped using 3D printing technology for
justification of the proposed M2LP model with experimental results. As can be
seen from the results, the proposed M2LP model is a fast, accurate, and reliable
regression model for design optimization of microwave antennas.
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1 INTRODUCTION

In most of the wireless communication systems, there are requirements such as low profile designs with performance
criteria such as high gain, specific radiation pattern, or wide operation band. One of the most commonly used low pro-
file antenna design is microstrip antenna (MSA). MSA design has been extensively being used in many applications such
as high-performance aircraft, spacecraft, satellites, and missiles communication stages where size, weight, cost, perfor-
mance, and ease of installation are at most importance.1-3 The main design elements in the modeling of an MSA are
radiation element, dielectric substrate, feed network, or feed element. The radiation element in MSA design can take
many forms such as rectangular, circular, triangular, and any other configuration. As for the feed network, There are many
types of methods for feed network for patch antenna designs such as pin feed, line feed, or aperture coupling. Another
method for feeding of radiation element is to use of a probe-fed capacitor patch element next to the radiation element.4

Int J Numer Model. 2020;33:e2682. wileyonlinelibrary.com/journal/jnm © 2019 John Wiley & Sons, Ltd. 1 of 16
https://doi.org/10.1002/jnm.2682

 10991204, 2020, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jnm

.2682 by Istanbul A
rel U

niversity, W
iley O

nline L
ibrary on [04/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1002/jnm.2682
https://orcid.org/0000-0002-7351-4980
https://orcid.org/0000-0002-3351-4433
http://wileyonlinelibrary.com
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fjnm.2682&domain=pdf&date_stamp=2019-09-12


2 of 16 CALIK ET AL.

The advantage of using capacitive feed designs is that the inductive impedance of the probe is effectively cancelled. Thus,
the designed antenna can achieve a wide operation band and improvement on the radiation efficiency of the design.

The relations between the antennas' geometrical and design specifications usually consist of linear and nonlinear com-
ponents such as the relation of antenna size to operation frequency, radiation pattern, and return loss.5,6 Especially with
the increase of the requested antenna performance measures such as operation bandwidth, gain, and specified radia-
tion pattern, the design procedure of the antenna becomes much more complex due to the complex inner relationships
between the geometrical design specifications and the requested performance criteria. For creating a high-performance
antenna design within the feasible design parameters an optimization process based on an accurate and reliable model is
needed. In such a case, the designer should either use a low accurate coarse model for computationally efficient optimiza-
tion process or a highly accurate fine design model with the low computational efficient optimization process. For the last
decades, many studies have been done on creating numerical or analytical methods for accurate models for the design
of microwave stages, one of the most commonly used numerical methods is artificial neural network (ANN) models.7-10

Commonly, either measured or simulated results of microwave designs are being used for creating ANN-based circuit
models. Even though the gathering of training and test data might become a considerable effort, once the ANN model is
created the overall computation duration of estimation can be overlooked, most especially during a design optimization
process. Thus, by using ANN models, it is possible to achieve a computationally efficient solution for design optimiza-
tion of microwave stages based on either simulation or measurement results. However, in case of a design problem with
large scale data set with complex inner relationship between variables and outputs, ANN models fail to exploit spatially
local correlation due to their nature that tries to include all the possible relations between input and output layers in a
single layer.

With the recent development in high-end hardware systems deep learning (DL) algorithms have become a new solution
method for many challenging complex and enormous-sized problems such as human activity recognition using mobile
sensors,11 approach for estimation of remaining useful life of a subsystem or a component using sensor data,12 for financial
time series,13 wind power or wind speed prediction,14,15 electrical impedance tomography (EIT) imaging,16 and full-wave
nonlinear inverse scattering problems.17 convolutional neural network (CNN) is a class of deep-neural networks inspired
by the biological process of animals visual cortex.18-21

The CNN architecture is similar to multilayer perceptron (MLP) models, where both models are trained with a version
of the back-propagation algorithm, and both of them consist of input, output, and hidden layers. However, in CNN, the
hidden layer consists of multiple convolutional layers, rectified linear unit (RELU) layers, pooling-layers, fully connected
layers, and normalization layers. The main difference of CNN form the MLP is that, in case of modelling problem with
high number of input variables, it is improbable to connect neurons to all neurons in the previous layer because not only
an architecture like that might not take the spatial structure of the data set into account, but also it would extremely
increase the duration of training process. CNN exploit spatially local correlation by enforcing a sparse local connectivity
pattern, similar to the biological process of animals visual cortex, between neurons of neighbouring layers: each neuron
is only connected to a limited region of the previous layer. In Figure 1, an example schematic of a CNN network has
been presented. However, CNN models have a disadvantage of exorbitant training process compared with counterpart
numerical models, due to their nature, which usually requires a high-end performance hardware setup such as GPU.

In this work, to achieve highly accurate and computationally efficient antenna model to be used in a design optimiza-
tion problem, a modified multi-layer perceptron (M2LP) model has been proposed. The proposed M2LP is an equivalent
CNN model of a standard multi-layer percptron (MLP). Where instead of traditional parameters of MLP such as "sigmoid"

FIGURE 1 Basic block structure of convolutional neural network (CNN) for image processing applications
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and "tanh" as for activation functions, Levenberq Marquart, and Bayesian regression methods as for training the models,
more advanced design parameters of DL algorithms such as batch norm layer, leaky ReLU, parametric ReLU, and Adam
training algorithm specifically developed for training of accurate models had been used. In section 2, design of a capacitive
feed antenna (CFA) model had been proposed alongside its design variables and their upper-lower constraint for creating
a 3D EM-based data set to be used in training and test process of the proposed M2LP model. In section 3, the methodol-
ogy of the proposed M2LP model had been explained in details alongside its design parameters. In section 4, a study case
for performance evaluation of proposed M2LP with its traditionally counterpart model based on different design param-
eters had been studied. Furthermore, the proposed M2LP model has been used in a design optimization process and the
obtained optimal geometrical design parameters of the antenna have been used for prototyping and justification of the
proposed methodology via experimental results. Finally, the work ends with a brief conclusion section in section 5.

2 CAPACITIVE FEED ANTENNA DESIGN

As is mentioned before, one of the methods for feeding of a radiation element is to use of a probe-fed capacitor patch
element next to the radiation element to achieve a wide operation band and improvement on the radiation efficiency of
the design. In this section, an example design of a CFA had been presented in Figure 2. Two dielectric layers had separated
the top and ground layer of the design. The top layer consists of a rectangular radiation element and a circular pin feed
element.

In the studied CFA design, some important geometrical design parameters have a specific effect on the design per-
formance measures. As an example, the increase in the length of the radiation element would decrease the operating
frequency band and vice versa. Increase in the substrate height would increase the bandwidth. Decreasing the feed spac-
ing would increase the real part of input impedance, and the increase in the feed diameter would increase the imaginary
part of input impedance. Herein for the sake of simplicity on study case, the shape of the radiation element had been
taken as a square patch. The data sets for training and test process of M2LP models have been given in Table 1, which are
generated by using 3D Electromagnetic Simulation Tool CST Microwave Studio.

In this work, it is aimed to create a black box model of the CFA in Figure 2 by using the data sets given in Table 1.
The proposed black box model can be seen in Figure 3, where the selected geometrical design parameters are taken as
input variables and the real and imaginary part of the return loss characteristics are the requested outputs. Additionally,

FIGURE 2 A, Side and B, top schematic view of the capacitive feed antenna (CFA) design

Training Test
Parameter Range Step Size Range Step Size
R {4 , 6 , 8} 2 {5 , 7} 2
L4 [0.5 , 2.5] 0.5 [0.5 , 2.5] 0.5
L2 [20 , 60] 5 [20 , 60] 5
H1 [10 , 20] 5 [10 , 20] 5
H2 [0.25 , 1] 0.25 [0.25 , 1] 0.25
f : Frequency (GHz) [1,10] 0.5 [1,10] 0.5
Total sample 30 780 20 520

TABLE 1 Training and test sets specifications (mm)
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FIGURE 3 Black box representation of the capacitive
feed antenna (CFA)

TABLE 2 Some samples from the training and test data sets Input Output
Dataset R L4 L2 H1 H2 f Real Imaginer
Training 4 2.5 60 20 1 10 0.717 -0.029

6 2 50 20 0.75 3 0.775 0.196
8 0.5 20 15 0.5 1.5 0.281 -0.920

Test 5 1 30 10 1 7.5 0.797 -0.168
7 1.5 40 20 0.25 6 0.740 -0.483

in Table 2, some samples from the training and test data sets have been given. In the next section, the design methodology
of the proposed CNN based MLP model is given in details.

3 MODIFIED MULTI LAYER PERCEPTRON

DL has emerged in the field of image processing and achieved a high superiority compared with handcrafted feature
extraction and classification algorithms. In particular, the successes of classification problems have been overcome even
at human level.22,23 DL has a wide range application area such as segmentation,24,25 multi-object tracking,26,27 biomedical
applications,28,29 and even lip reading.30

CNN is a subfield of DL. CNN, based on tensor convolution, unlike MLP, uses filter kernels with h × w (height, width)
dimensions where local information is processed instead of fully-connected layers. As an example, in Figure 4, the input
tensor image is in H × W × C dimensions and the filter dimensions are given as 3 × 3 × C, where C is channel size. When
each filter is multiplied and summed by the values in the tensor, it produces only one value and therefore the depth of
the output tensor resulting from the convolution of the filter tensor with the input tensor is 1. In the example in Figure 4,
the output matrices of H′ × W′ × 1 dimensions for each filter kernel are concatenated in the third dimension to form the
input tensor belonging to the next layer. The output of H′ × W′ × C′ dimensions occurs after C′ filters are processed. The
tensor convolution for the corresponding sample is given in Equation (1).

X𝓁+1(i, 𝑗, k) =
1∑

m=−1

1∑
n=−1

C∑
u=1

X𝓁(i − m, 𝑗 − n,u) × h𝓁
k (m,n,u). (1)

With the development of CNN, there has been essential development in training algorithms, weighted initialization
methods,31 and suggestion of new layers in artificial intelligence.32-35 To update the weights, algorithms such as SGD,
AdaGrad,36 AdaDelta,37 and Adam,38 which use stochastic processing, were released, and batch normalization (BN)
layer32 was used to eliminate saturation and vanishing gradient problems in a network. In addition to these, it has
been proposed to use new activation functions such as ReLU, leaky-ReLU, and exponential linear unit (ELU) instead of
tanh and sigmoid, which are frequently used in MLP. Also, due to the improved graphics processing unit (GPU) paral-
lel processing capabilities, a new framework has been eventuated to handle large-scale data and to tackle the difficult
problems.

CNN-based regression is a relatively new issue.39-41 The use of DL in the regression field is not so rich compared with its
use in areas such as classification, detection, and segmentation. For regression, it is necessary to design specific network
models for the nature of each problem and determine the appropriate loss function. In this context, by adapting the inno-
vations in the CNN field to MLP, we recommend that a novel M2LP model be used to estimate antenna parameters. M2LP
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FIGURE 4 Structure of tensor convolution operation: when a filter is convoluted with the input tensor, an output of H′ ×W′ ×1 is produced.
The size of the output tensor is H′ × W′ × C′ by filtering the input tensor of the C′ pieces filter. As an example, h𝓁

k filters are selected 3 × 3 × C

FIGURE 5 Equivalent structure of
multilayer perceptron (MLP): x𝓁 is in
vector form in MLP, while in
convolutional neural network (CNN), it
is in tensor form as X𝓁 . In the case
where the data tensor is X ∈ ℜ1×1×C, the
convolution operator produces the same
results as MLP under the parameters
stride s = 1, padding p = 0, and number
of filter @ = C′ . Therefore, this structure
of convolution is equivalent to MLP

is created by using new layers and functions on MLP. The basis of this lies in the fact that the equation in Equation (1)
can be reduced to MLP operations.

X𝓁+1(1, 1, k) =
C∑

u=1
X𝓁(1, 1,u) × h𝓁

k (1, 1,u). (2)

A convolution process needs two important parameters in addition to the filter dimensions: 1-stride, 2-padding. The
stride (s) represents the step size of the filter kernel, while padding (p) determines the zero thickness to be added around
the image tensor. Let the image tensor has a 1 × 1 × D size. If Equation (1) is rewritten for s = 1 and p = 0, we get
Equation (2). Equation (2) reflects the equivalence of the calculation for MLP, as shown in Figure 5. In the CNN, the
neurons are arranged in the 3D instead of vertically aligned. The advantage of this representation is that these layers and
functions developed on any DL platform can be used to construct innovative MLP networks. Some of these layers are BN
and as an activation function ReLU.

The ReLU is one of the significant layers offered instead of sigmoid and tanh functions which have vanishing gradi-
ent problem in negative and positive regions. The derivable region of sigmoid and tanh is very limited. On the other
hand, ReLU (Equation (3)) can be differentiated in the whole positive region. In this way, the activation function remains
operable. The vanishing gradient problem may also occur in the negative region for ReLU. To prevent this, leaky ReLU
Equation (4) is proposed in Xu et al.42 Leaky ReLU permits negative values to be passed by using an 𝛼 factor selected
from (0, 1), unlike in ReLU. Another advantage of ReLU-type activation functions is that they do not contain exponential
expressions, and the cost of forward and backward computational complexity is low.
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ReLU(x) =
{

x x ≥ 0
0 otherwise (3)

LeakyReLU(x) =
{

x x ≥ 0
𝛼x otherwise (4)

The BN layer given in Algorithm 1 (in Table 3) is an important layer developed for DL, which is not used in standard
MLP designs. This layer is usually used between conv. and ReLU layers for whitening the mini-batch statistics. After
whitening, mini-batch is multiplied with 𝛾 and summed with 𝛽 to avoid the saturation region of the incoming ReLU
layer. 𝛾 and 𝛽 are learnable parameters. Hence, mini-batches are specifically redesigned to reduce loss function for every
activation function. BN also helps to create more stable results by eliminating the sensitive dependence of networks on
initialization values. Furthermore, there is the ability to minimize the vanishing gradient problem.

The algorithm that generates the M2LP network according to these layers is given in Algorithm 3. In terms of having a
fair comparison, the same algorithm is used in the construction of MLP networks (Algorithm 2). The difference between
MLP and M2LP is the use of BN and leaky ReLU layers in M2LP. Algorithms accept xi ∈ ℜ1×1×6 as the input, since the
length of the data is 6. They also work with two input parameters: block depth (BD) and first neuron size (FNS). BD
specifies the hierarchical increased architecture of the model. Neurons of generated twin blocks are designed to be the
twice neuron of the previous block. Each block includes two layers which have the same neuron size. In the last part of the
network, there are regression neurons with Œ2 expansion layer. The FNS designates neuron distribution of the network.
Figure 6 is given as an example for constructing a model with BD:{1,2} FNS: 16 parameters. In the algorithms, a function
called conv(·) works with three parameters: 1-input tensor, 2-filter depth, and 3-filter number.

FIGURE 6 Outputs of the network generating algorithm: all networks have one input layer which has 6 neurons, and ×2 expansion +
regression layers. Therefore, if the block depth and first neuron size are 1 and 16, the algorithm produces A,. Another case, if the parameters
are 2 and 16, the algorithm produces B,. This procedure is same both multilayer perceptron (MLP) and modified multi-layer perceptron
(M2LP) for a fair comparison. The differences are the inner structure of layers
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4 STUDY CASE

As is mentioned before, in addition to the groundbreaking performance of DL in areas such as classification, detection,
and segmentation, the regression area remains a fairly new and worthwhile field. In particular, regression of antenna
parameters using CNN is a relatively new application. The use of CNN-based models instead of MLP networks cur-
rently used as state-of-the-art enables the use of innovations developed in the CNN field in regression. Herein, a novel
CNN-based MLP model had been proposed for fast, accurate, and high-performance modelling of a CFA. In this section,
first, design parameters of the proposed model had been presented. After that, the performance comparison of the pro-
posed M2LP model with its traditionally counterpart algorithm has been given. Finally, the obtained M2LP model had
been used with a meta-heuristic optimization algorithm to obtain an antenna design for industrial, scientific, and medical
(ISM) band application. The obtained optimal antenna design than had been prototyped by using 3D printer technology
for justification of the proposed modelling method with experimental results.

4.1 Test workflow
For MLP and M2LP, network generation according to Algorithms 2 and 3 is performed for BD ∈ {1, 2, 3} and FNS ∈
{8, 16, 32, 64} parameters. The networks produced for each case is run 10 times due to the stochastic results caused by
the random weight assignment. The mean absolute error (MAE) results of real, imaginary(imag) and 0.5 × (real + imag)
are recorded as the output of an experiment. These three cases are recorded separately for 10 trials. The results of the
experiments are given in Table 5 as the average, minimum, and maximum values of the 10 trials for real, imaginary(imag),
and 0.5 × (real + imag) outputs.

The hyperparameter list used in the training of networks is given in Table 4. For the learning rate, an exponentially
decreasing method is used between [10-2, 10-5]. As the batch size, 200 is selected since the data set is large scale. In weight
initialization, Xiavier31 is used and Adam38 is chosen as the optimizer. MAE is used as a loss function for the training of
networks instead of root-mean-square error (RMSE). Nets are trained along 200 epoch. The training of the networks is
based on the 8-core 3 Ghz processor with 16 GB ram and 1080TI graphics card. MatConvNet43 is preferred for the training
platform.

4.2 Performance comparison of the proposed M2LP
In Table 5 and Figure 7, the performance comparison of the traditional MLP model with the proposed M2LP model for
regression of real and imaginary parts of the antennas S11 has been presented for 10 different runs using the data given in
Table 1. For each of the models, a different combination of network design parameters had been used to find the optimal
black box model. As can be seen from the table, both of the models have similar performance results in the models with
1-layer depth. However, when the depth and number of neurons increase, the performance of the M2LP model starts
to outperform its traditionally counterpart algorithm MLP. However, it should be noted that ever increasing the design
parameters would not improve the performance such as for MLP with depth 3 and neuron 64, where the model starts to
lose performance compared with simpler models. Herein, the M2LP model with depth 2 and 64 neurons found to be the
best model for our regression problem, where not only the model has a better performance than its counterpart model,
but also has a narrower standard variation for 10 runs. Furthermore, in Figure 8, the learning graph of the networks for
300 max epoch had been presented. This process is also repeated 10 times due to the random assignment of the network
weights. Red and blue shaded areas are confidence intervals of training and test random processes, respectively. As seen

TABLE 4 Parameters used in training phase of MLP and M2LP Hyperparameter List
Learning Rate [10-2, 10-5] exp decay
Batch size 500
Weight init. Xiavier improved
Optimizer Adam
Weight decay 10-5

Loss function MAE
Epoch 200

Abbreviations: MAE, mean absolute error; MLP, multi-
layer perceptron; M2LP, modified multi-layer perceptron.
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FIGURE 7 The average mean absolute error (MAE) values of 0.5 × (Real + Imag) after 10 trials: each twin bars include multilayer
perceptron (MLP) (dark tones) and modified multi-layer perceptron (M2LP) (light tones) results. first neuron size (FNS) ∈ {8, 16, 32, 64} are
related with first neuron size corresponding block depth

FIGURE 8 Training and test process of multilayer perceptron (MLP) and modified multi-layer perceptron (M2LP): confidence intervals of
minimum, maximum, and average values are presented for the training processes obtained from 10 trials. To monitor the test performance of
networks, they are tested with all test data in each 10 epoch. Although MLP appears to be better than M2LP in the training process, M2LP in
the test phase produces narrower and lower mean absolute error (MAE) bu using batch normalization (BN). M2LP has a more reliable use

in Figure 8, the variance of M2LP is narrower than MLP by using batch normalization, which keeps the network in an
efficient learning regime and achieves internal covariate shift problem.32 Another important issue is the occurrence of
vanishing gradient problem in some experiments of MLP network due to using the tanh(·) activation. Hence, it is observed
from the high upper boundary exit where the MLP can be overfitting. Thus it can be said that ReLU activation can be
preferred in M2LP to prevent overfitting.

M2LP is also compared with support-vector machine (SVM) and ensemble-based regression methods which are widely
used in literature. Parameter estimation of these methods has critical importance to minimize the regression cost function.
The selected parameters play a key role in ensuring the compatibility between the regression model and the data. Because
a comparison to be made using only a few values is not be fair, we used Bayesian optimization (BAO), which is frequently
preferred in machine learning44-46 for defining parameters of SVM and ensemble methods. The BAO handles the objective
function as a Gaussian Process, and performs the selection stochastically.47Box Value (C), kernel scale and 𝜖 for SVM
type models, and learning cycles, minimum leaf size, and maximum splits parameters for ensemble-type models are given
to BAO for optimization. While radial basis function (RBF) and polynomial kernels are chosen for SVM, bagged tree,
and LSboost are preferred in Ensemble methods. The models generated by the parameters obtained after 30 iterations
are used for the test. Since models such as ensemble and SVM can be trained on a single output, individual models are
developed for real and imag. The parameter values obtained after the optimization are given in the Model Parameters
column. Information on MLP and M2LP is taken from Table 5. MAE error metrics are averaged over training and test
errors and given in the Error column.

As can be seen in Table 6, although SVMrbf gives good result for training error , it remains at 0.22 MAE for test data. This
shows that SVMrbf overfits the training data. For SVMploy, after selection of degree parameter as 2, the optimization has
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been done. Therefore, it obtains 0.2493 and 0.2446 training and test MAE performance. Then, when the degree param-
eter is also given to the BAO method, it is determined as 3, and SVMploy achieves 0.1979 and 0.2054 training and test
MAE results. Similar training and test errors show that SVMpoly tries to learn the training data instead of memorizing it.
Ensemblebag method is much better than SVM in terms of modelling capability. The Ensemblelsboost version obtained a test
error of 0.052, while it obtained 0.051 test error. MLP could not reach the success it achieved in training to the test sam-
ples. M2LP shows that it is the best network in terms of modelling capability and test error. 1.24 × 10−3 error has shown
an efficient performance.

The M2LP is a capable method for modelling a CFA. Another proof of this is given in Figure 9. Herein, there are
3 simulation case results. The case parameters are presented in Table 7. Each row in Figure 9 are related to dB, real,
and imaginary comparison, respectively. Despite difficult situations such as indented values in the 2nd case, the M2LP
achieved values close to the target results. MAE performances are given in Table 7 for each case.

4.3 Experimental results
Design optimization of the CFA has been achieved by using the proposed M2LP model and a meta-heuristic optimization
algorithm differential evolutionary algorithm (DEA).48 In this optimization problem, S11 (outputs of M2LP) of the design

FIGURE 9 Simulation comparison of target and modified multi-layer perceptron (M2LP): column figures are related to the selected case,
and rows 1,2, and 3 are dB real and imag. results, respectively. As seen from figures, M2LP predicts similar results even if indented hard
situation like case 2. Hence, M2LP can be used for estimating of S11 parameters of new geometric cap feed designs

TABLE 7 The parameters of selected; Figure 9: First
five parameters are constant, and f ∈ {0, 0.5, 1, … , 10}

Input Parameters Average Error (MAE)
Case Number R L4 L2 H1 H2 f Real Imag
1 5 1.5 40 15 0.25 [1,10] 0.0088 0.0067
2 7 2.5 55 10 0.25 [1,10] 0.0071 0.0073
3 5 2.5 55 20 0.25 [1,10] 0.0116 0.0095

Note. Average Error is calculated over different f for M2LP. Abbreviations: MAE, mean
absolute error; M2LP, modified multi-layer perceptron.
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CALIK ET AL. 13 of 16

L1 112 W1 32

L2 40.3 W2 L2
L3 35.3 W3 51.3
L4 2.0 H1 0.7
R 6.35 H2 10.25

TABLE 8 Optimally selected antenna parameters in (mm)

FIGURE 10 CEL Robox Micro Manufacturing
Platform49

FIGURE 11 A, Top and B, perspective view of the 3D-printed antenna

would change concerning the geometrical design parameters (input variables of M2LP with respect to constraints in
Table 1) using the cost function given in Equation (5) to obtain an antenna design operates at 2.4 GHz.

Costi(R,L2,L4,H1,H2, 𝑓 r) = min[|(S11)(R,L2,L4,H1,H2, 𝑓 r)|]. (5)

Here, for normalization of optimization output value, S11 is not converted into decibels, so the absolute value of S11 is
less than one. The user-defined parameters of the DEA had been taken as: crossover constant = 0.5, mutation scale factor
F = 0.25, maximum iteration = 20, and population = 20.

The optimally selected design values from DEA had been given in Table 8. These values are then had been used for
prototyping of the antenna by using 3D printing technology (Figure 10). The 3D printable material “PLA” had been
used as a dielectric substrate. In Figures 11 and 12 and Table 9, the 3D-printed antenna and its measured S11 and gain
performance had been given. As it can be seen from the measurement and M2LP-based simulation results, the proposed
M2LP is a fast, accurate, and reliable model which can be used in the design optimization process.
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14 of 16 CALIK ET AL.

FIGURE 12 Simulated and measured A, gain and B, S11 of the the 3D-printed antenna

TABLE 9 Comparison of simulation and measurement results S11 dB Gain dB
Frequency (GHz) Simulated Measured Measured
2.4 -18.5 -15.5 6.9

5 CONCLUSIONS

As mentioned before, the MSA design had been extensively being used in many wireless communication systems due
to their unique features. (MSAs). However, with the increase of the requested antenna performance measures such as
operation bandwidth, gain, and specified radiation pattern, the design procedure of the antenna had become a design
optimization problem with complex inner relationships between the geometrical design parameters and the requested
performance criteria. In this work for achieving this problem, first, a hybrid network, M2LP, based on MLP and CNN
architecture had been proposed. Then the proposed M2LP model had been trained and tested with a 3D EM-based data
belong to a CFA for creating a fast, accurate, and reliable regression model to be used in design optimization process. In
this study, the performance of the proposed M2LP model had been compared with its traditional counterpart regression
model MLP. Furthermore, the reliability of the proposed M2LP antenna model had been justified with experimental
results obtained from a 3D-printed antenna. As a result from both simulation and measurements, it can be seen that the
proposed M2LP algorithm is not only an effective, highly accurate, and stable algorithm compared with its counterpart
method, but also has a potential to be used in modelling of other type of microwave circuits with higher complexity.
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