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1. Introduction
Coronaviruses are a type of single-stranded RNA virus that infects mammals and birds. In humans, they cause respiratory 
diseases ranging from the common cold to severe/fatal illnesses [1]. Three types of human-infecting coronaviruses have 
been associated with deadly phenomena since the early period of the 2000: severe acute respiratory syndrome coronavirus 
(SARS-CoV), Middle-East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV2). In November 2002, SARS-CoV affected 8098 people and caused 774 deaths in China in the 
period up until June 2003. In June 2012, MERS-CoV appeared in the Middle East, resulting in over 2000 cases, and by 2017 
about 600 deaths were reported [2,3].

SARS-CoV-2, discovered in China, has affected over 22,639,650 people and killed 792,197 in more than 215 countries 
as of August 20, 2020.1 The World Health Organization (WHO) announced “COVID-19” as the name of a new disease 
caused by SARS-CoV-2.2 The ongoing COVID-19 threat rapidly spread all over the globe and is still transfecting humans. 
Thus, many efforts are ongoing in the investigation of suitable preventive and control strategies, as neither vaccines nor 
direct-acting antiviral drugs are available for the treatment of human SARS-CoV-2.

Most of the therapeutic options for COVID-19 were based on antiviral agents, which are used for treating previous 
Zika, Ebola, and Nipah viruses, SARS-, and MERS-CoVs [4]. This is due to the fact that the time required for drug 
discovery programs to develop, evaluate, and obtain appropriate new therapeutic agents might take more than 10 years. 
Thus, researchers are focused on therapeutics, which have proven efficacy against viruses similar to COVID-19 instead of 
a new potent anti-COVID-19 agent. These available therapeutic agents against SARS-CoV-2 could be either virus-based, 
1 World Health Organization (2020) onward (continuously updated). WHO Coronavirus Disease (COVID-19) Dashboard [online]. https://covid19.
who.int/?gclid=CjwKCAjw8df2BRA3EiwAvfZWaP34yJr8HdK4mBed5dKa2T6flZjBA5sFDNCata6LM6-eXa1CmMjHwhoCUZQQAvD_BwE [accessed 
01 June 2020].
2 World Health Organization (2020) onward (continuously updated). WHO Coronavirus Disease (COVID-19) Dashboard [online]. https://www.who.
int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it 
[accessed 01 June 2020].
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involving small molecules targeting viral S protein, viral protease inhibitors, and RBD–ACE2 blockers, or host cell-based 
including host cell protease inhibitors and host cell endocytosis inhibitors [4].

Spike protein directly mediates viral entry with the S1 domain, which is responsible for host cell surface binding through 
ACE2 receptors and S2 domain which is responsible for membrane fusion. The viral binding to host cell surface follows S1/
S2 cleavage by host proteases such as TMPRSS2, and cathepsins B and L. Previous studies have already demonstrated that 
furin, a proprotein convertase, can mediate S1/S2 cleavage unlike other coronaviruses and contribute to membrane fusion 
efficiency which explains the current strong infectious capacity of SARS-CoV-2 [2,3]. Thus, SARS-CoV-2RBD/ACE2 and 
Furin could be potential targets for COVID-19 to prevent viral entry. Furthermore, SARS-CoV-2 main protease known 
as Mpro, which is essential in processing viral polyproteins and viral replication, could be a nontoxic target for managing 
COVID-19 as humans do not have proteases with similar cleavage specificity [5].

In vitro studies by Liu et al. had already demonstrated that two drugs, chloroquine (CQ) and hydroxychloroquine 
(HCQ) efficiently inhibited SARS-CoV-2 infection in vitro and these findings were also supported by preliminary clinical 
studies [6–9]. Several other drugs such as remdesivir and favipiravir are currently undergoing clinical studies to test their 
efficacy and safety in the treatment of COVID-19 in China and other European countries such as Turkey, and some 
promising results have been achieved so far3[10 – 13]. Furthermore, lopinavir and ritonavir are widely used as HIV protease 
inhibitors, and previous in vitro and in vivo studies have also shown their potential activity against other coronaviruses; 
SARS-, and MERS-CoVs [14–16].

In the present study, we investigated the binding of five active molecules, currently applied as the first line of treatment, 
favipiravir, HCQ, remdesivir, lopinavir, and ritonavir onto three different possible target proteins, the receptor-binding 
domain of SARS-CoV-2 spike protein (SARS-CoV-2RBD), SARS-CoV-2 main protease (SARS-CoV-2 Mpro), and human 
furin (hFUR) protease by molecular docking simulations. We aimed to shed light on the functional group selection for 
future drug design studies by reporting protein-drug interactions at the molecular level.  

2. Materials and methods
2.1. Preparation of the protein and target molecules
The crystal structure of the human proprotein convertase furin (PDB: 5JXG,1.8 Å) [17], COVID-19 main protease in 
complex with an inhibitor N3 (PDB: 6LU7, 2.2 Å) [18], without inhibitor (APO form) (PDB ID: 6M03, 2.0 Å) by Zhang 
et al, which has not yet  been published, and coronavirus spike receptor-binding domain complexed with its receptor 
ACE2 (PDB: 6LZG, 2.5 Å)[19] were obtained from the Research Collaboratory for Structural Bioinformatics Protein Data 
Bank (RCSB PDB). Small molecules were removed from crystal structures by using BIOVIA Discovery Studio software 
(BIOVIA, San Diego, CA, USA) [20].4 Polar hydrogens and Kollman charges were added to the protein and a pdbqt format 
file was generated using AutoDockTools 1.5.6 software (Scripps Research, San Diego, CA, USA) [20].

The canonical simplified molecular-input line-entry system (SMILES) of lopinavir, remdesivir, HCQ, favipiravir, 
and ritonavir was obtained from the PubChem database. Their structures were built, and structural minimization was 
carried out on UCSF Chimera software (RBVI, San Francisco, CA, USA) to obtain a stable conformer [21]. Structural 
minimizations were directly handled through default parameters on UCSF Chimera (San Francisco, CA, USA) software 
(except for applying Gasteiger charges) to minimize molecules. Afterward, the structures were converted into pdbqt 
format using AutoDockTools 1.5.6 software (San Diego, CA, USA), for use for docking calculations with AutoDock Vina 
(San Diego, CA, USA).
2.2. Docking 
Molecular docking simulations are a widely used computational method for the initial guess of ligand binding to 
receptor protein [22]. AutodockVina 1.1.2 software (San Diego, CA, USA) [23] was used for docking calculations and the 
exhaustiveness parameter was selected as 8, and 10 models were generated for each ligand. Windows 7 Ultimate operating 
system (64-bit), installed on a home-built desktop computer, equipped with Intel Core i3-3110M 2.40 GHz processor and 
8GB memory, was utilized for all computational work. Results were analyzed using BIOVA Discovery Studio software 
(San Diego, CA, USA) and VMD-Visual Molecular Dynamics software (The University of Illinois, Champaign, IL, United 
States)  [24].
3 Republic of Turkey Ministery of Health. (2020) onward (continuously updated). Favipiravir 200 mg Tablet - COVID-19 (SARS-CoV2 
Enfeksiyonu) Tedavisinde Kullanılacak İlaçlara İlişkin Bilgilendirme [online]. Website: https://khgmstokyonetimidb.saglik.gov.tr/
TR,64669/favipiravir-200-mg-tablet---covid-19-sars-cov2-enfeksiyonu-tedavisinde-kullanilacak-ilaclara-iliskin-bilgilendirme.html. 
[accessed 01 June 2020].
4 Dassault Systèmes BIOVIA, Discovery Studio Modeling Environment, Release 2017, San Diego: Dassault Systèmes, 2016.
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3. Results
Due to the recent COVID-19 pandemic, many efforts have been directed to the investigation of suitable preventive and 
control strategies for the treatment of human SARS-CoV-2 infection. Almost all these attempts are with the previously 
used antiviral agents, such as lopinavir, ritonavir, favipiravir, HCQ, and remdesivir. To unravel mechanism and inhibition 
capability of these five clinically used drugs against SARS-CoV-2 infections, we have run molecular docking simulations 
using three therapeutic targets; SARS-CoV-2RBD-ACE2 interface, SARS-CoV-2 Mpro, and hFUR. 

First, we designed docking analyses with a grid box covering only the SARS-CoV-2RBD-ACE2 interface. The binding of 
five molecules onto the SARS-CoV-2RBD yielded binding affinities ranging from –4.2 kcal/mol to –6.9 kcal/mol (Table and 
Figure 1). Among these active molecules, lopinavir and ritonavir yielded higher binding affinities towards this target, –6.9 
kcal/mol and –6.4 kcal/mol, respectively. SARS-CoV-2RBD residues Arg 403 created hydrogen bonds with both ligands, Tyr 
453 made H-bond with ritonavir, Glu 406 interacted with lopinavir through hydrogen bonds and with ritonavir through 
electrostatic interactions, and Tyr 505 was involved in π-π interactions in both cases. Favipiravir, HCQ, and remdesivir 
were not potential binders of the SARS-CoV-2RBD-ACE2 interface despite creating hydrogen bonds with RBD residues Arg 
403, Tyr 453, Phe 490, Gln 493, Ser 494, Gly 496, and Asn 501. Relatively small sizes of favipiravir and HCQ must be the 
reason for small binding affinities obtained in the study (Figure 2). Thus, these drugs are less likely to bind and inhibit the 
SARS-CoV-2RBD-ACE2 interface during SARS-CoV-2 infection.

Secondly, we set out docking simulations to examine the binding of these drugs on SARS-CoV-2 Mpro, another very 
important element in COVID-19 infection. Docking analysis onto SARS-CoV-2 Mpro didn’t yield significantly higher 
binding affinities than those for SARS-CoV-2RBD, ranging from –5.2 kcal/mol to –6.6 kcal/mol. Lopinavir was bound with 
the highest binding affinity, i.e. –6.6 kcal/mol (Table and Figure 1). All the binding sites for all five drug molecules were 
outside the active site of the protease. Therefore, we repeated simulations with smaller simulation box, targeting only the 
active site, SARS-CoV-2 Mpro-ac, comprised of amino acid residues Thr 26, His 41, Met 49, Leu 141, Asn 142, Gly 143, Ser 
144, Met 165, Glu 166, and Gln 189. Molecular interactions at this site are provided in Figure 3. This time binding affinities 

Table. Binding affinities in kcal/mol of five molecules on three different target proteins.

Binding affinities (kcal/mol) Favipiravir Hydroxychloroquine Remdesivir Lopinavir Ritonavir

SARS-CoV-2RBD –5.1 –4.2 –4.9 –6.9 –6.4
SARS-CoV-2 Mpro-ac –5.4 –5.9 –7.5 –7.5 –6.8
SARS-CoV-2 Mpro –5.7 –5.2 –5.5 –6.6 –6.4
hFURac –5.1 –5.2 –7.0 –6.8 –6.8
hFUR –6.0 –6.0 –6.6 –8.0 –6.9

Figure 1. Graphical representation of binding affinities for five molecules on 
three proteins including the active site of proteases, SARS-CoV-2-Mpro-ac and 
hFURac.
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increased for all ligands except for favipiravir. Specifically, for lopinavir and remdesivir binding affinities increased by 0.9 
kcal/mol and 2.0 kcal/mol, respectively and both active molecules produced binding affinities of –7.5 kcal/mol. Active site 
residues on the SARS-CoV-2 Mpro (His 41, Met 49, and Met 165) were active interactions, and Thr 26, Glu 166, and Gln 
189 interacted through hydrogen bonds with lopinavir. Similarly, active site residues His 41, Met 49, Leu 141, and Met 165 
were actively involved in binding and Gly 143, His 163, and Glu 166 were involved in hydrogen bonding with remdesivir, 
proving that both ligands could have their own inhibitor activity through these active site residues by a direct active site 
blockage. Also, high binding affinities of lopinavir and remdesivir were probably due to interactions between His 41, Met 
49, and Met 165 residues, and aromatic rings present on drug molecules thereby, drugs targeting the active site of SARS-
CoV-2 Mpro should include aromatic rings to obtain high binding affinity. As a consequence, our data suggest that lopinavir 
may also target SARS-CoV-2 Mpro as it is an antiretroviral protease inhibitor of HIV-1. Hence, this would be an explanation 
for the clinical activity of lopinavir against SARS-CoV-2. This binding site was also predicted to be a lopinavir binding 
site in a computational study by Liu et.al. [16] and was also revealed in the X-ray structure (PDB ID: 6LUV) [18] for a 
peptide derivative inhibitor N3 (Figure SI-1). We also investigated the recently revealed crystal structure of SARS-CoV-2 
Mpro in its APO form by Zhang et al. (PDB ID: 6M03), which has not yet been published. Molecular docking simulations 
produced very similar results compared to the inhibitor bound crystal structure. For whole protein docking, lopinavir was 
still clearly the best ligand, owing to the highest binding energy. The binding energy of ritonavir and favipiravir slightly 
increased, while that of HCQ, lopinavir, and remdesivir declined. The energy difference of active molecules on both APO 
and HALO state was in the range of ±0.7 kcal/mol (Figure SI-2). When molecular docking simulations were repeated for 
SARS-CoV-2 Mpro-ac, binding affinities for all ligands slightly increased, however, the binding affinity order did not change. 
Lopinavir and remdesivir were still the best binding ligands to the active site of SARS-CoV-2 Mpro (Figure SI-2). These 
similar results were not surprising upon utilizing SARS-CoV-2 Mpro in its APO form, rather than inhibitor bound HALO 
form, because both crystal structures superimposed very well with an RMSD value of 0.49 Å (the most unmatched region 
was the C-terminal), which proved very similar target protein structures for both types (Figure SI-3).      

The last target protein investigated was hFUR. Binding affinities obtained were in the range of –6.0 kcal/mol to –8.0 kcal/
mol (Table and Figure 1). Lopinavir provided the highest binding affinity with –8.0 kcal/mol among all active molecules. 

Figure 2. Molecular interactions for five molecules at the SARS-CoV-2RBD site. Drug molecule with the highest binding affinity was 
highlighted in bold frame. Legend for interactions was provided in the middle and interacting amino acid residues were provided in 
the table.
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On the other hand, ritonavir and remdesivir bound to this target with binding affinities of –6.9 kcal/mol and –6.6 kcal/
mol, respectively. Molecular interactions between all ligands and hFUR are provided in Figure 4. As it can be seen from the 
table in Figure 4, remdesivir was the only active molecule to hit the active site directly, even though the grid box covered 
the whole protein (Figure SI-4). We repeated docking simulations with a smaller grid box covering only the active site of 
human furin (hFURac), comprised of amino acid residues Asp 153, Arg193, His 194, Arg 197, Leu 227, Val 231, Ser 253, 
Asp 258, Asn 295, and Ser 368. Binding affinity for remdesivir increased by 0.4 kcal/mol, while it decreased for favipiravir 
by 0.9 kcal/mol, HCQ by 0.8 kcal/mol, lopinavir by 1.2 kcal/mol, and ritonavir by 0.1 kcal/mol, when compared to docking 
on whole protein structure. The only increase in binding affinities was observed for remdesivir upon covering only the 
active site of the protein. Remdesivir dominantly interacted with hFURac by the active site of human furin residues Asp 
191, His 194, Ser 253, and Thr 365 through hydrogen bonding. Also, hydrophobic interactions between aromatic rings, the 
phosphoric backbone of remdesivir, and Asp 153 and Leu 227 residues were probably the main reason for high binding 
affinity. The highly hydrophilic and aromatic character of this pocket also led to high binding affinity (Figure SI-5). This 
suggests that hFUR could be a main target for the remdesivir even if it involves the inhibition of replication of the viral 
genome and viral assembly. We should also mention that when all molecules were docked onto the whole hFUR, four 
molecules, favipiravir, HCQ, ritonavir, and lopinavir didn’t hit the active site. This suggested that hFURac may not be 
accessible to these molecules, but to remdesivir.

4. Discussion
In this study, we investigated the binding of readily prescribed drug molecules favipiravir, HCQ, remdesivir, lopinavir, 
and ritonavir onto three therapeutic targets which should be targeted for COVID-19 treatment. Among all targets, the 
receptor-binding domain of SARS-Cov2 spike protein (SARS-CoV-2RBD), SARS-CoV-2 main protease (SARS-CoV-2 
Mpro), and human furin (hFUR) protease, binding affinities for all drug molecules were calculated to be higher for active 
sites of both hFUR and SARS-CoV-2 Mpro. Moreover, remdesivir directly hit the active site of hFUR, with a binding affinity 
of -7.0 kcal/mol, while other drugs did not target the active site of hFUR directly. The reasons for this direct targeting are 
the adenosine triphosphate moiety of remdesivir, making strong hydrophobic and polar interactions in the active site 
supported by hydrogen bonds. 

Figure 3. Molecular interactions for five molecules at the SARS-CoV-2Mpro-ac site. Drug molecule with the highest binding affinity was 
highlighted in bold frame. Legend for interactions was provided in the middle and interacting amino acid residues were provided in 
the table.
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Clinically used drug molecules; lopinavir, remdesivir, and ritonavir yielded higher binding affinities for both active sites 
of hFUR and SARS-CoV-2 Mpro, than other therapeutic targets such as SARS-CoV-2RBD while HCQ and favipiravir yielded 
less affinity for these therapeutic targets using molecular docking simulations. In addition, remdesivir was a strong binder 
of the active site of hFUR. Thus, this should be a major reason for the potential activity of remdesivir against COVID-19 in 
the preclinical studies. hFUR could be targeted for the treatment of SARS-CoV-2 infections other than usual drug targets 
such as SARS-CoV-2 Mpro and SARS-CoV-2RBD. Moreover, remdesivir could be targeting both viral replication machines 
and host proteases responsible for the SARS-CoV-2 entry into cells. Our results indicated that to design hFURac inhibitors, 
remdesivir, a nucleic acid derivative, should be used as a template. Likewise, to target SARS-CoV-2RBD or SARS-CoV-2 Mpro, 
a lopinavir like drug molecule should be designed. These findings will lead to more target-specific drug design studies.

Figure 4. Molecular interactions for five molecules at the hFUR. Drug molecule hitting the active site directly was highlighted in bold 
frame. Legend for interactions was provided in the middle and interacting amino acid residues were provided in the table.
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Supporting Information Figures: 

 

 

Figure SI-1. Comparison of N3 binding from crystal structure, PDB ID: 6LUV, and 

remdesivir and lopinavir binding from the current study at SARS-CoV-2 Mpro-ac. The 

same interacting amino acid residues were shown in red rectangular boxes. 
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Figure SI-2. Comparison of binding affinities from molecular docking simulations of all 

ligands for two forms of SARS-CoV-2 Mpro/pro-ac proteins (holo form-PDB ID:6LU7 and 

apo form-PDB ID:6M03).  
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Figure SI-3. Superimposition of crystal structures for two forms of SARS-CoV-2 Mpro/pro-

ac proteins. Holo form (PDB ID:6LU7) was in blue, inhibitor molecule was represented 

as ball and sticks and apo form (PDB ID:6M03) was in gray. Mainly different, C-terminal 

regions were labeled.    
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Figure SI-4. Molecular docking simulations results for hFUR. Remdesivir was the only 

active molecule hitting the active site, although the simulations grid box covered the 

entire protein.  
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Figure SI-5. A) Hydrophobicity and B) aromaticity of hFURac. The active site is highly 

hydrophilic and aromatic, creating many face-to-face aromatic interactions with the 

aromatic rings of remdesivir. 
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