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We present an analysis of the process y(3686) - Q" Qt (Q~ — KA, QF - K*A, A — pn~,
A — prt) based on a dataset of 448 x 10° y(3686) decays collected with the BESIII detector at the
BEPCII electron-positron collider. The helicity amplitudes for the process y(3686) — Q~QF and the
decay parameters of the subsequent decay Q= — K~A (Q+ — K*A) are measured for the first time by a fit
to the angular distribution of the complete decay chain, and the spin of the Q~ is determined to be 3/2 for
the first time since its discovery more than 50 years ago.

DOI: 10.1103/PhysRevLett.126.092002

The discovery of the Q™ [1] was a crucial step in our
understanding of the microcosmos. It was a great triumph
for the eightfold way model of baryons [2], and it led to the
postulate of color charge [3]. A key feature of the eightfold
way and the quark model is that the Q™ spinis J = 3/2, a
prediction that has never been unambiguously confirmed
by experiment. The current best determination of J = 3/2
is based on an analysis [4] that assumes the spins of both
the 2% and the Q0 are their quark model values of J = 1/2.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

One of the conceptually simplest processes in which a
baryon-antibaryon pair can be created is electron-positron
annihilation. In this Letter, two Q~ spin hypotheses, J =
1/2 or J = 3/2, are tested using the joint angular distri-
bution of the sequential decays of the ete™ — Q QF
process. For the J = 1/2 hypothesis, two form factors
are needed in the production of a baryon-antibaryon pair in
electron-positron annihilation, and a clear vector polariza-
tion, strongly dependent on the baryon direction, is
observed [5,6]. For the J = 3/2 hypothesis, the annihila-
tion process involves four complex form factors [7]. In
addition to vector polarization, the spin-3/2 fermions can
have quadrupole and octupole polarization [8,9].
Polarization of the Q™ can be studied using the chain of
weak decays Q- — K~A and A — pa~, where the first
decay is described by the ratio aq- and the relative phase
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¢o- between the parity-conserving P-wave and parity-
violating D-wave (S-wave for the J = 1/2 hypothesis)
decay amplitudes. The decay parameters cannot be calcu-
lated reliably in theory [10-12], and only aq- has been
previously measured [13-15].

The resonance production process eTe™ — y/(3686) —
Q- QF was observed by the CLEO-c experiment with
27+5 and 326 =19 events using the double-tag and
single-tag technique as described in Refs. [16] and [17],
respectively. With the world’s largest y(3686) data sample
of (448.1 £2.9) x 10° y(3686) events accumulated in
eTe~ annihilation with the BESIII detector [18], we are
able to select about 4000 y(3686) — Q~QF events, estab-
lish for the first time that the Q™ spin is J = 3/2, and
measure Q- polarizations in the y(3686) — Q~Q* reac-
tion and evidence for the dominance of the parity-violating
D-wave amplitude in the weak decay Q= — K~A.

For the J =3/2 hypothesis, in helicity formalism
[19,20], there are four helicity amplitudes in the production
density matrix for ete™ — w(3686) — Q~QF [21].
We define the ratios A1) (1/2)/Ax1/2)~(12) = e,

A/ Aap - = hae™, and A )/
Aq1y2)~(1/2) = h4e'?s, where h; and ¢; (i =1, 3, 4) are
real numbers to be determined from fits to data samples.
The angular distribution is given by the trace of the Q~ spin
density matrix [21]: 1 + a,(3656) COS* Og-, Where a,(366) =
(1= 2(11[2 = s+ [y P)]/[L + 201 2 + s + ).
When considering the weak decays Q™ — K~A and
A — pn~, additional parameters aqg-, o, and ¢o- describ-
ing the ratio and relative phase between two helicity
amplitudes are needed [21]. The joint angular distribution
of Og-, Oa, Pp, 0, and ¢, (see Fig. 1) is [21]

P32 = lels:ozg:()l’#bwaw. (1)
For the J = 1/2 hypothesis, the joint angular distribution is
defined as [21]

P12 = Zzzozzzorﬂa/wavo- (2)
Here r,, b,,/a,,, and a, are defined in terms of the helicity
amplitudes [21]. By fitting the joint angular distribution of
the selected events with Eqs. (1) and (2), we can, in
principle, obtain the helicity amplitudes and Q~ /A decay
parameters.

To maximize the reconstruction efficiency, a single-tag
method is implemented in which only the Q™ or the Q7 is
reconstructed via Q™ — KA - K pr~or Q" — KTA =
K*prt, and the Q* or Q™ on the recoil side is inferred
from the missing mass of the reconstructed particles. The
following event selections are described for Q™ — K~ pa~
as an example; the same selections are also applied for the
Q7 selection.

Charged tracks reconstructed from multilayer drift cham-
ber (MDC) hits are required to be within a polar-angle (6)

ete” c.m. system Q-

Q™ rest frame A rest frame

FIG. 1. Definition of the helicity angles used in the analysis.
The helicity angles Oqg-, 05, ¢a, 0,, and ¢, are spherical
coordinates of the Q~, A, and p momenta in three reference
frames: the ete™ c.m. system and the Q~ and A rest frames,
respectively. The £ axis in the e™e™ c.m. system points along the
incoming positron, and Zo- is the Q= momentum direction. The
polar axis direction in the Q7 rest frame is Zg-, and yo- is along
Z X Zo-, where Z, is the A momentum direction. The polar axis
direction in the A rest frame is Z,, and y, is along Zo- X Z,.

range of | cos @] < 0.93. To determine the species of final-
state particles, specific energy loss (dE/dx) information is
used to form particle identification (PID) probabilities for
pion, kaon, and proton hypotheses. Charged particles are
identified as the hypothesis with the highest probability, and
only one K~ and one proton are required in each event. The
rest of the negative charged tracks in an event are assumed to
be z~. To avoid potentially large differences between data
and Monte Carlo (MC) simulation for very low momentum
tracks, the transverse momenta of the p, K—, and 7~ tracks
are required to be larger than 0.2, 0.1, and 0.05 GeV/c,
respectively.

The A — pz~ candidates are reconstructed by applying a
vertex fit to the identified proton and a negatively charged
pion with an invariant mass (M ,.-) in the mass window of
[1.110,1.122] GeV/c?. If more than one A candidate is
found, the one with pz~ invariant mass closest to the
nominal A mass [22] is kept. The A candidate is then
combined with a K~ track to reconstruct the Q. A
secondary vertex fit is applied to K~ A to improve the
Q™ -mass resolution and to suppress backgrounds. The
invariant mass of K~ A (Mg-,) is a requirement in the mass
window of [1.663, 1.681] GeV/c?. To obtain the antibaryon
candidates QF, we require the recoiling mass of K~A
(M%) in the mass window of [1.640, 1.692] GeV/c?.
All the mass windows are determined by optimizing the
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M GeV/c?)

recoil
My
o))

Events / (1MeV/c?)

[Pty

164 166 168 1.7
M, A(GeVic?)

1,66 2
Poa 166 168 17
My (GeVicd)

Q64 166 166 1.7
M (GeVi/e?)

FIG. 2. (a) Distribution of M}?E‘jil versus M-, of the selected
K~ A candidates in Q~ reconstruction process. The red solid box
shows the signal region of y(3686) — Q~Q™. (b) Projection onto
M- for events with M5! in the signal region. (c) The same as
(b) but for K* A tagged events. Dots with error bars are data, the
solid blue curves show the results of the fit, the red dashed lines
show the signal components of the fit, and the blue dotted lines
show the background components of the fit.

figure of merit s/v/s + b with s being the number of signal
events expected in data and b the number of the backgrounds
in data estimated by using a normalization factor of sideband
regions and the signal region.

The distribution of M-, versus M! of the selected
K~ A candidates is shown in Fig. 2(a). A clear cluster of
events in the data sample corresponding to w(3686) —
Q~Q7 is observed in the signal region of the red box area.

An inclusive y(3686) MC sample with 4 x 103 (3686)
events is used to study the possible background sources
[23] included in the simulation, and no peaking background
is found. The continuum production of Q~Q* is expected
to be very low and neglected. This is also checked with data
collected at 3.65 GeV with an integrated luminosity of
49 pb~! [about 7% of the y(3686) data sample], and no
significant Q~Q* signal is observed.

Events in the signal region, shown in Fig. 2(a), are used
to perform the angular distribution analysis. After applying
all the event selections, 2507 y(3686) — Q~QF candi-
dates are selected by tagging the Q™ (called the Q™ sample)
and 2238 candidates by tagging the Q* (called the Q*
sample) by counting. The number of non-Q~ background
events is estimated from the numbers of events in
the Q7 -mass sideband as Mg-, € [1.644,1.653] or
[1.692,1.701] GeV/c?. The Q= (Q*) sample is estimated
to contain 298 £+ 17 (189 & 14) background events.

An unbinned maximum-likelihood fit to the selected
events is performed to measure the free parameters in the
angular distribution. The likelihood function is defined as

(|H) xe(L;
£ = wigj) = LIS g
where j is the candidate event number, p({;|H) is the
angular distribution function for the cascade decay in
Egs. (1) and (2), { = {0q.0x. $.0,.¢,} are the angular
distribution variables, and H contains the parameters to be
determined from the fit. N, is the number of the selected

TABLE I. Two sets of fit values of the helicity parameters in
w(3686) — Q~Q+ decays of the spin-3/2 hypothesis. The first
uncertainties are statistical, and the second ones systematic.

Parameter Solution 1 Solution II

hy 0.30 +0.11 £0.04 0.31 £0.10 £ 0.04
b, 0.69 £0.41 £0.13 2.38 £0.37 £ 0.13
hy 0.26 +0.05 £0.02 0.27 £0.05 + 0.01
b3 2.60 £0.16 + 0.08 2.57 £0.16 £ 0.04
hy 0.51 £0.03 £ 0.01 0.51 £0.03 £ 0.01
N 0.34 +0.80 £+ 0.31 1.37 £0.68 £ 0.16
bao 429 4+0.45+0.23 4.154+0.44 £0.16

events in the data samples. N(H) is the normalization
factor calculated with the MC integration method, and €({;)
is the detection efficiency. Contributions from the back-
ground events to the likelihood have been considered
by using events in the sideband regions of the Q~. The
fit is performed by minimizing the objective function
S = —(InLyy —In Ly,), Where Ly, is the likelihood
function of events selected in the signal region of Q~
and QF samples and Ly, is the likelihood function of
background events of these two single-tag samples esti-
mated by the sideband method.

The decay parameters a, and ag- are fixed to the Particle
Data Group averages of previously measured values [5,13—
15]. Assuming that there is no CP violation in Q~ and A
decays, ap = —a; = 0.753 £0.007 and ag- = —ag+ =
0.0154 £0.0017 [24]. A simultaneous fit is performed
to the Q™ and Q* events selected from data in which the
constraint ¢po- = —¢g+ is applied. The change of 25 of the
fit assuming J = 1/2 and that of a linear combination
of J=1/2 and J =3/2 is —232 with eight more free
parameters, so we determine the significance of the J =
3/2 hypothesis over the J = 1/2 to be larger than 146 and,
thus, determine the spin of Q™ as 3/2 unambiguously. For
the fit with J = 3/2, we find two solutions with identical fit
quality, as shown in Table I. Tests with large MC sample
confirm the existence of two solutions in such fits, although
its origin is not obvious in the expression of the decay
amplitude. The statistical and systematic covariance matri-
ces for the two solutions are supplied in Supplemental
Material [25].

The signal MC events generated according to phase space
distribution are weighted with matrix elements calculated
with the parameters obtained from the fits, and the weighted
MC sample predictions are compared with data in five
distributions of the helicity angle, with the background
contributions estimated from the Q~ sideband regions
indicated as green histogram. We observe that the fit with
Q™ spin J = 3/2 describes data very well, while J = 1/2
fails to describe data, as shown in Fig. 3(a) for cos 0,3,
which has the most prominent difference. The moments Mg
and Mg defined as M, = 1/NY W (370 (b,caco are
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FIG.3. (a) The cos 0, 3 distributions of data (dots with error bars) and fits with J = 3/2 (red histogram) and J = 1/2 (blue histogram)
hypotheses; (b) and (c) are the M and M distributions of data and fit results; and (d) distribution of the test statistic t = S’ =1/2 _ §/=3/2
for a series of MC simulations performed under the J = 1/2 (right peak) and J = 3/2 (left peak) hypotheses. The lines represent
Gaussian fits to the simulated data points. The ¢ value obtained from experimental data is indicated by the vertical bar.

compared between data and those two weighted MC
samples, as shown in Figs. 3(b) and 3(c). Here N is the
number of events in the data or MC samples. Clear
preference of J =3/2 over J =1/2 is observed. Since
the two sets of solutions describe the data equally well, we
show the angular distributions for only one set of them.

The likelihood ratio t = 2($/=!/2 — §/=3/2) is used as a
test variable to discriminate between the J = 3/2 and J =
1/2 hypotheses [28]. The MC sample for each hypothesis is
generated according to its joint angular distribution, propa-
gated through the detector model, and subjected to the same
event selection criteria as the experimental data. Each MC
subset has the same size as the real data samples and is
assumed to have the same amount of background. The test
statistic ¢ distribution is shown in Fig. 3(d). The simulations
for the right peak were performed under the J =1/2
hypothesis, while those in the left peak correspond to
the J = 3/2 hypothesis. It is clear that the ¢ distributions of
the two hypotheses are well separated. Since the ¢ value
from the data lies well within the left peak, our data favor
the J = 3/2 hypothesis.

The following systematic uncertainties are considered
for the angular distribution measurement. The tracking
and PID efficiencies are studied with control samples
of Jw — pprata~, Jjw = AN (A= pr~, A= pr"),
J/w — KKt +c.c.,and J/w — pK~A + c.c., and the
polar angle and transverse momentum (p,) dependent
efficiencies are measured. Subsequently, the efficiency of
MC events is corrected by the two-dimensional efficiency
scale factors and the uncertainty is estimated by varying
the efficiency scale factors by one standard deviation for
each p, versus cos @ bin. The differences between the new
fit results and the nominal ones are taken as the systematic
uncertainties. The uncertainty due to the background
estimation is estimated by changing the Q~-sideband
regions from [1.644, 1.653] and [1.692,1.701] GeV/c?
to [1.643, 1.653] and [1.692,1.702] GeV/c?. The
differences between fit results with and without changing
sideband regions are taken as the systematic uncertainties.
The uncertainties arising from the values of the fixed

parameters aq- and a, are estimated by changing these
two parameters by one standard deviation separately and
then comparing the refitted parameters with the original
results. We find that the uncertainty of ag- can be
neglected. All of the above contributions are added in
quadrature to obtain the total systematic uncertainties as
shown in Table II.

From Table I, we find that the magnitudes of the
amplitudes are about the same in the two solutions, while
the phases ¢, and ¢, can be very different. All the /; values
are less than one, which means that the amplitude
A(1)2)-(1/2) dominates the decay process. The value of
¢o- provides information on whether the process is P-wave
dominant (¢po- = 0) or D-wave dominant (¢o- = 7). By
comparing the maximum-likelihood values between the fit
with ¢o- fixed to zero or z and the nominal fit, we find that
the significance for nonzero ¢q- is 3.7¢ and that for a non-
wpo- is 1.50. Thus, ¢o- favors the D-wave-dominant case,
which differs from the theoretical predictions of P-wave
dominance [29]. The ratio of D to P wave can be calculated
as |Ap|?/|Ap|> = 2.4 2.0 (solution 1) and |Ap|?/]|Ap|* =
3.3 £ 2.9 (solution II), where the uncertainty is the sum
in quadrature of the statistical and systematic uncertainties.
Allowing aq- to be determined by the fit, we obtain
ag- = —0.04 +0.03, which does not contradict the
quoted result from previous experiments but with poorer
precision [13-15].

TABLE II.  Summary of the systematic uncertainties for the
decay parameters in solution I (solution IT) of y(3686) — Q~Q.

Track/PID  Background an Total
Al 0.04 (0.04) 0 (0.01) 0 (0) 0.04 (0.04)
A¢,  0.13(0.12)  0.02 (0.04) 0.01 (0.01) 0.13 (0.13)
Ahs;  0.01 (0.01) 0 (0) 0.02 (0) 0.02 (0.01)
Ags  0.03 (0.03) 0.07 (0.02) 0 (0.01) 0.08 (0.04)
Ah,  0.01 (0.01) 0 (0.01) 0 (0) 0.01 (0.01)
A¢p, 028 (0.11) 0.13 (0.12)  0.02 (0) 0.31 (0.16)
Apg  0.16 (0.16)  0.17 (0.03) 0 (0.01) 0.23 (0.16)
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FIG. 4. The cosfqo- dependence of the multipolar polarization
operators. The solid lines represent the central values, and the
shaded areas represent 4+ one standard deviation.

In conclusion, based on 448 x 10° y(3686) events, we
observe 4035 + 76 y(3686) — Q Q% signal events. We
conduct the first study of the angular distribution of the
three-stage decay and found that the hypothesis of Q™ with a
spin of 3/2 is preferred over a spin of 1/2 with a significance
of more than 14 ¢ and establishes the spin of the Q™ to be
3/2 for the first time that is independent of any model-based
assumptions. The helicity amplitudes of y(3686) — Q~Q*
and the decay parameter of Q™ — K~ A, ¢o-, are also
measured for the first time. With the helicity amplitudes
measured in Table I, a,(3636) = 0.24 = 0.10, where the
uncertainty is the sum in quadrature of the statistical and
systematic uncertainties.

With the helicity amplitudes measured in Table I, we
calculate the cos - dependence of the multipolar polari-
zation operators as shown in Fig. 4. The uncertainties
(statistical and systematic) are calculated using the covari-
ance matrix of the fitted s; and ¢;. For the process of
ete” — y(3686) —» Q~QF, Q~ particles not only have
vector polarization (r;), but also have quadrupole (r¢, 77,
rg) and octupole (rq, r1;) polarization contributions [8,9].

As a by-product, with the same data sample, the
branching fraction for w(3686) — Q™ Q" is measured as
(5.85 £0.12 £ 0.25) x 1073, where the first uncertainty is
statistical systematic and the second is systematic [25]. This
result agrees with previous measurements [16,17] with
improved precision.
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