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Abstract. In this paper, we introduce a new type of (p; q) exponential function with some properties

and a modified (p; q)-Szász-Mirakyan operators by virtue of this function by investigating approximation

properties. We obtain moments of generalized (p; q)-Szász-Mirakyan operators. Furthermore, we derive

direct results, rate of convergence, weighted approximation result, statistical convergence and Voronovskaya

type result of these operators with numerical examples. Graphical representations reveal that modified

(p; q)-Szász-Mirakyan operators have a better approximation to continuous functions than pioneer one.

1. Introduction

Approximation theory is one of the oldest branches of mathematics. To approximate continuous functions

with q-analogue of linear positive operators is significant application of q-calculus in approximation theory.

Cieśliński [1] established alternative definition of q-exponential function. He defined q-exponential function
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using Cayley transformation. The main advantages of the new q-exponential function consist of better qual-

itative properties i.e., its properties are more similar to properties of ez, z ∈ C [1]. Over the years, many

research papers were developed on q-analogue of various linear positive operators and their approximation

properties.

Recently, in [2] research of Bernstein-Stancu operators on (p; q)- integers were performed and discussed

uniform convergence and direct result of the operators. Eventually, in [3] (p; q)-analogue of Bernstein oper-

ators was investigated and developed the same convergence. Acar [5] and Mursaleen et.al [4], [12] proposed

(p; q)-generalization of Szász-Mirakyan operators and discussed uniform convergence, rate of convergence,

Voronovskaya result in those papers.

The motivation of recent work is developing a new type of (p; q) exponential function and utilizing this

new exponential function to modify (p; q)-Szász-Mirakyan operators. We studied uniform convergence and

statistical convergence of modified (p; q)-Szász-Mirakyan operators. In the first section, we discussed some

sequences and rate of convergence of operators. We also proved Voronovskaya type result. In the last section,

we present some graphical representations.

Consider, 0 < q < p ≤ 1. The definition of (p; q)-integer is,

{m}p,q =
pm − qm

p− q
, m ∈ N,(1.1)

{0}p,q = 0,

and (p; q)−factorial is

{m}p,q! =

m∏
k=1

{k}p;q, m ∈ N

{0}p;q! = 1.(1.2)

(p; q)-exponential function is defined as [6]

ep,q(z) =

∞∑
j=0

p
j(j−1)

2 zj

{j}p,q!
,(1.3)

Ep,q(z) =

∞∑
j=0

q
j(j−1)

2 zj

{j}p,q!
.(1.4)

The (p; q)-exponential functions have following property:

ep,q(z)Ep,q(−z) = Ep,q(z)ep,q(−z) = 1.
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Another way of defining two (p; q)-exponentials as infinite products is

ep,q(z) =

∞∏
j=0

1

(pj − qj(p− q)z)
,(1.5)

Ep,q(z) =

∞∏
j=0

(pj + qj(p− q)z).(1.6)

2. New type of (p; q)-exponential function

New (p; q)-exponential function is determined as

(2.1) Ep,q(z) = ep,q(z/2)Ep,q(z/2) =

∞∏
j=0

pj + qj(p− q) z2
pj − qj(p− q) z2

,

ep,q(z), Ep,q(z) are usual (p; q)-exponential functions.

Theorem 2.1. (p; q)-exponential function Ep,q(z) is analytic in |z| < Rp,q

(2.2) Ep,q(z) =

∞∑
j=0

zj

[j]p,q!
, |z| < Rp,q

where,

Rp,q =


2
p−q , 0 < q < p < 1.

2q
q−p , q > p.

∞, p = q = 1.

(2.3)

[j]p,q =
pj − qj

p− q
.

2

pj−1 + qj−1
= {j}p,q.

2

pj−1 + qj−1
,(2.4)

and [j]p,q! =

j∏
m=1

[m]p,q =

j∏
m=1

{m}p,q
2

pj−1 + qj−1
= {j}p,q!

2j∏j−1
m=0(pm + qm)

.(2.5)

Proof. Since (1.5) and (1.6) are absolutely convergent in |z| < 1, multiplying (1.5) and (1.6), we obtain

ep,q(z/2)Ep,q(z/2) =

∞∑
n=0

∞∑
k=0

p
n(n−1)

2 q
k(k−1)

2 ( z2 )n+k

{n}p,q!{k}p,q!

=

∞∑
j=0

( z2 )j

{j}p,q!

∞∑
k=0

p
(j−k)(j−k−1)

2 q
k(k−1)

2 {j}p,q!
{j − k}p,q!{k}p,q!

.(2.6)

Using formula for the (p; q)-binomial coefficients [7], we have

(2.7)

j−1∏
r=0

(pr + xqr) =

j∑
k=0

p
(j−k)(j−k−1)

2 q
k(k−1)

2 {j}p,q!
{j − k}p,q!{k}p,q!

xk.

In particular,

(2.8)

j∑
k=0

p
(j−k)(j−k−1)

2 q
k(k−1)

2 {j}p,q!
{j − k}p,q!{k}p,q!

= (1 + 1)(p+ q)...(pj−1 + qj−1).
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Substituting (2.8) into (2.6), we obtain (2.2), where [j]p,q defined as in (2.4). To get the radius of convergence,

lim
n→∞

∣∣∣∣ zj+1

[j + 1]p,q!

∣∣∣∣∣∣∣∣ [j]p,q!zj

∣∣∣∣
= lim
n→∞

∣∣∣∣ z

[j + 1]p,q

∣∣∣∣
=


(p−q)|z|

2 , for q < p,

(q−p)|z|
2q , for q > p.

(2.9)

Applying d’Alembert’s test on (2.9), we obtain (p, q 6= 1) the radius of convergence (2.3). For p = q = 1,

Ep,q(z) is ez, thus R1 =∞. �

Theorem 2.2. The Ep,q(z) satisfies the following properties:

(2.10) 1. Ep,q(−z) = (Ep,q(z))−1, 2. |Ep,q(ix)| = 1.

Proof. The first part of above equation (2.10) directly comes from the definition of Ep,q(z).

That implies, Ep,q(z) = Ep,q(z̄).

Then, |Ep,q(ix)|2 = Ep,q(ix) Ep,q(ix) = 1. �

The above (p; q)-exponential function (2.1) has more improved properties similar to function ez.

The definition of (p, q)-Szász-Mirakyan operators in [5] is

(2.11) Am,p,q(f ;x) =

∞∑
j=0

1

Ep,q({m}p,qx)
q

j(j−1)
2
{m}jp,qxj

{j}p,q!
f

(
{j}p,q

qj−2{m}p,q

)
.

Acar obtained moments, uniform convergence and Voronovskaya result of the above operators.

We define a different sort of modified (p, q)-Szász-Mirakyan operators via new (p; q)-exponential function

for f ∈ C[0,∞] in (2.1) is

(2.12) Sn,p,q(f ;x) =
1

Ep,q([n]p,qx)

∞∑
k=0

[n]kp,qx
k

[k]p,q!
f

(
[k]p,q
[n]p,q

)
,

where 0 < q < p ≤ 1, n ∈ N, 0 ≤ x < 2
(p−q)[n]p,q = pn−1+qn−1

pn−qn .

Remark 2.1. We choose an x between 0 and pn−1+qn−1

pn−qn because we want Ep,q([n]p,qx) to be convergent.

Remark 2.2. From calculations for every k ∈ N;

[k]p,q
[n]p,q

= (pk−qk)(pn−1+qn−1)
(pn−qn)(pk−1+qk−1)

,

0 ≤ [k]p,q
[n]p,q

< pn−1+qn−1

pn−qn ,
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Then we consider

(2.13) sn(p, q;x) =
1

Ep,q([n]p,qx)
.
[n]kp,qx

k

[k]p,q!
.

Clearly, sn(p, q;x) is positive for 0 < q < p ≤ 1, n ∈ N and every 0 ≤ x < 2
(p−q)[n]p,q .

The operator Sn,p,q is linear and positive.

3. Moments of Sn,p,q

Here, we determine approximation moments of operators (2.12).

Lemma 3.1. For n ∈ N and 0 < q < p ≤ 1. Below equalities are verified:

Sn,p,q(1;x) = 1,(3.1)

Sn,p,q(t;x) = x,(3.2)

Sn,p,q(t
2;x) = x2 +

x

[n]p,q
,(3.3)

Sn,p,q(t
3;x) = x3 +

3x2

[n]p,q
+

x

[n]2p,q
.(3.4)

Proof. The result is obvious for Sn,p,q(1;x).

Now

Sn,p,q(t;x) =
1

Ep,q([n]p,qx)

∞∑
k=0

[n]kp,qx
k

[k]p,q!

(
[k]p,q
[n]p,q

)

=
1

Ep,q([n]p,qx)

∞∑
k=1

[n]k−1p,q x
k

[k − 1]p,q!

= x.

and

Sn,p,q(t
2;x) =

1

Ep,q([n]p,qx)

∞∑
k=0

[n]kp,qx
k

[k]p,q!

(
[k]p,q
[n]p,q

)2

=
1

Ep,q([n]p,qx)

∞∑
k=1

[n]k−1p,q x
k

[k − 1]p,q!

(
1

[n]p,q

)
+

1

Ep,q([n]p,qx)

∞∑
k=2

[n]k−2p,q x
k

[k − 2]p,q!

=
x

[n]p,q
+ x2.

Also

Sn,p,q(t
3;x) =

1

Ep,q([n]p,qx)

∞∑
k=0

[n]kp,qx
k

[k]p,q!

(
[k]p,q
[n]p,q

)3

=
1

Ep,q([n]p,qx)

∞∑
k=0

[n]kp,qx
k

[k]p,q!

(
[k]3p,q − 3[k]2p,q + 2[k]p,q + 3[k]2p,q − 2[k]p,q

[n]3p,q

)

= x3 +
3x2

[n]p,q
+

x

[n]2p,q
.
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�

Central moments are:

Sn,p,q(t− x;x) = 0,(3.5)

Sn,p,q((t− x)2;x) =
x

[n]p,q
.(3.6)

Remark 3.1. From our choice of p and q, we know that limn→∞[n]p,q = 1
p−q . But, to get the uniform

convergence and other results of approximation for Sn,p,q we suppose that sequences qn ∈ (0, pn); pn ∈ (qn, 1]

such that qn, pn → 1 and pNn → a, qN
′

n → b as n tending to infinity, i.e., limn→∞ 1/[n]p,q = 0.

Now, we have uniform convergence of new kind of operators for all f ∈ Cϑ[0,∞)

where

Cϑ[0,∞) = {f ∈ C[0,∞) : |f(t)| ≤ A(1 + t)ϑ} for A > 0, ϑ > 0

and

‖f‖ = supx≥0
|f(x)|
1+x2 .

Theorem 3.1. Let (pn) and (qn) be the sequences such that pn → 1, qn → 1 and pNn → a, qN
′

n → b as n

tending to infinity then for each f ∈ Cϑ[0,∞)

(3.7) lim
n→∞

‖Sn,p,q(f)− f‖ϑ = 0.

Proof. From Korovkin’s result, we put evidence that

lim
n→∞

‖Sn,p,q(ti)− xi‖ϑ = 0, i = 0, 1, 2.

Since Sn,p,q(1;x) = 1, the result is clear for i = 0.

For i = 1

lim
n→∞

‖Sn,p,q(t)− x‖ϑ = lim
n→∞

‖x− x‖ϑ = 0.

and for i = 2

lim
n→∞

‖Sn,p,q(t2)− x2‖ϑ = lim
n→∞

‖x2 +
x

[n]p,q
− x2‖ϑ

= 0.

Hence Sn,p,q(f ;x) is uniformly convergent to f ∈ Cϑ[0,∞]. �

Example 3.1. For p = 0.99 and q = 0.96, sequences of Sn,p,q defined by (2.12) is convergent to f(x) =

x2− 5x+ 10 (Fig. 1) and g(x) = x3−x+ 1 (Fig. 2) with increasing values of n (n = 10, 20, 30) respectively.
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Figure 1. Approximation to f by Sn,p,q for n = 10, 20, 30.

Figure 2. Approximation to g by Sn,p,q for n = 10, 20, 30.
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Example 3.2. For different choices of p and q, the sequence of operators Sn,p,q defined by (2.12) is conver-

gent to f(x) = x2 − 5x+ 10 (Fig. 3) and g(x) = x3 − x+ 1 (Fig. 4) with n = 50 respectively.

Figure 3. Approximation to f by Sn,p,q for n = 50.

Figure 4. Approximation to g by Sn,p,q for n = 50.

4. Some consequences

For this section, we provide several results on local approximation for Sn,p,q(f ;x). Here, Cb[0,∞) is the set

of bounded, continuous functions f on [0,∞). Attached norm on Cb[0,∞) is defined by‖f‖ = sup
x∈[0,∞)

|f(x)|.

Peetre’s K-functional is given by

K2(f, δ) = inf
h∈W 2

{‖f − h‖+ δ‖h′′‖}

where W 2 = {h ∈ Cb[0,∞) : h′, h′′ ∈ Cb[0,∞)}. From ( [9], p.177), there exists A > 0 such that K2(f, δ) ≤

Aω2(f, δ1/2), δ > 0, where

ω2(f, δ1/2) = sup
0<η<δ1/2,x∈[0,∞)

|f(x+ 2η)− 2f(x+ η) + f(x)|

is the second order modulus of continuity of functions f in Cb[0,∞). The first order modulus of continuity

of function f ∈ Cb[0,∞) is defined by

ω(f, δ1/2) = sup
0<η<δ1/2,x∈[0,∞)

|f(x+ η)− f(x)|.
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Theorem 4.1. Let 0 < q < 1 and p ∈ (q, 1]. The operators Sn,p,q map from Cb into Cb. Also, the following

inequality is satisfied.

(4.1) ‖Sn,p,q(f ;x)‖Cb
≤ ‖f‖Cb

.

Proof. From the definition of Sn,p,q(f ;x),

|Sn,p,q(f ;x)| ≤ 1

Ep,q([n]p,qx)

∞∑
k=0

[n]kp,qx
k

[k]p,q!

∣∣∣∣f( [k]p,q
[n]p,q

)∣∣∣∣.
Applying supremum to both sides here

sup
x≥0
|Sn,p,q(f ;x)| ≤ sup

x≥0
|f(x)| 1

Ep,q
Sn,p,q(1;x).

One has

‖Sn,p,q(f ;x)‖Cb
≤ ‖f‖Cb

.

�

Theorem 4.2. Let (pn) and (qn) be the sequences such that pn → 1, qn → 1 and

pNn → a, qN
′

n → b as n tending to infinity. Then for f ∈ Cb[0,∞), there exists A > 0 such that

(4.2) |Sn,p,q(f ;x)− f(x)| ≤ Aω2

(
f,

√
x

[n]p,q

)
.

Proof. For h ∈W 2, using Taylor’s expansion

h(t) = h(x) + (t− x)h′(x) +

∫ t

x

(t− u)h′′(u)du.

Now

|Sn,p,qh(t)− h(x)| ≤ 1
2‖h

′′‖Sn,p,q((t− x)2;x).

Also

|Sn,p,q(f ;x)| ≤ ‖f‖.

Hence

|Sn,p,q(f ;x)− f(x)| ≤ |Sn,p,q((f − h)(x);x)− (f − h)(x)|+ |Sn,p,q(h;x)− h(x)|

≤ 2‖f − h‖+
1

2
‖h′′‖Sn,p,q((t− x)2;x).

Taking infimum of the right hand side of above inequality for all h ∈W 2,

|Sn,p,q(f ;x)− f(x)| ≤ 2K2

(
f ; 1

4
x

[n]p,q

)
.

Since ω2(f, λδ) ≤ (λ+ 1)2ω2(f ; δ),

|Sn,p,q(f ;x)− f(x)| ≤ Aω2

(
f,
√

x
[n]p,q

)
.
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5. Rate of convergence

Suppose that C[0,∞) is set of all continuous functions on [0,∞) and consider following sets:

Cϑ[0,∞) = {f ∈ C[0,∞) : |f(t)| ≤ A(1 + t)ϑ} for A > 0, ϑ > 0

and

C∗ϑ[0,∞) = {f ∈ Cϑ[0,∞) : limx→∞
|f(x)|
1+x2 <∞}.

The first order modulus of continuity on [0, a] is defined as

ωa(f, δ) = sup
|t−x|≤δ

sup
0≤x≤a

|f(t)− f(x)|.

Theorem 5.1. Suppose that f ∈ C∗ϑ[0,∞). Let (pn) and (qn) be the sequences such that pn → 1, qn →

1 and pNn → a, qN
′

n → b as n tending to infinity and ωa+1(f, δ) be the modulus of continuity on [0, a+ 1] ⊂

[0,∞). Then

(5.1) ‖Sn,p,q(f ;x)− f(x)‖ϑ ≤ 6Af (1 + a2)
a

[n]p,q
+ 2ωa+1

(
f ;

√
a

[n]p,q

)
.

Proof. For 0 ≤ x ≤ a; 0 ≤ t,∞; From [8]

|f(t)− f(x)| ≤ 6Af (1 + a2)(t− x)2 + ωa+1(f ; δ)

(
|t− x|
δ

+ 1

)
.

Combining above inequality and Cauchy-Schwarz inequality,

‖Sn,p,q(f ;x)− f(x)‖ϑ ≤ Sn,p,q(|(f ;x)− f(x)|;x)

≤ 6Af (1 + a2)Sn,p,q((t− x)2;x)

+ ωa+1(f ; δ)

(
1 +

1

δ2
Sn,p,q((t− x)2;x)

)
.

From the central moments of operators and for 0 ≤ x ≤ a

Sn,p,q((t− x)2;x) = x
[n]p,q

≤ a
[n]p,q

= ζn.

Taking δ =
√
ζ

‖Sn,p,q(f ;x)− f(x)‖ϑ ≤ 6Af (1 + a2) a
[n]p,q

+ 2ωa+1

(
f ;
√

a
[n]p,q

)
.

�

6. Weighted approximation result

Here, we discuss weighted approximation of Sn,p,q through polynomial weight over the space CM defined

below.

Consider that

w0(x) = 1, wM (x) = (1 + xM )−1, (x ≥ 0,M ∈ N),
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CM = {f ∈ C[0,∞) : wM (f) is continuous, bounded and uniformly convergent.}.

The norm is defined by

‖f‖M = sup
x≥0

wM (x)|f(x)|.

Also, we refer some results associated to Steklov means. For h > 0 it is defined in [11]

fh(x) =

(
2

h

)2 ∫ h/2

0

∫ h/2

0

[2f(x+ s+ t)− f(x+ 2(s+ t))]dsdt.

We have

f(x)− fh(x) =

(
2

h

)2 ∫ h/2

0

∫ h/2

0

∆2
s+tf(x)dsdt,

f ′′h (x) = h−2[8∆2
h/2f(x)−∆2

hf(x)],

and hence

(6.1) ‖f − fh‖M ≤ w2
M (f, h), ‖f ′′h ‖M ≤ 9h−2w2

M (f, h)

Theorem 6.1. Suppose that Sn,p,q(f ;x) is defined as in (2.12), where (pn) and (qn) are the sequences such

that pn → 1, qn → 1 and pNn → a, qN
′

n → b as n tending to infinity. Let M ∈ N∗, then for f ∈ CM ,

(6.2) wM |Sn,p,q(f ;x)− f(x)| ≤ Nmw2
M

(
f ;

√
x

[n]p,q

)
, Nm > 0.

Proof. For M = 0, the result comes from Theorem 4.2. For f ∈ CM , M ∈ N,

wM |Sn,p,q(f ;x)− f(x)| ≤ wM |Sn,p,q(|f − fh|;x)|+ wM |Sn,p,q(fh;x)− fh(x)|

+ wM |fh(x)− f(x)|.

From Theorem 4.1 and the first property of Steklov means,

wM |Sn,p,q(|f − fh|;x)| ≤ ‖Sn,p,q(f − fh)‖M

≤ ‖f − fh‖M ≤ w2
M (f, h).(6.3)

Also, by Taylor’s expansion

wM |Sn,p,q(fh;x)− fh(x)| ≤ ‖f ′h‖MSn,p,q((t− x);x)

+
1

2
‖f ′′h ‖MSn,p,q((t− x)2;x).

From moments of operators Sn,p,q and the second property of Steklov means

wM |Sn,p,q(fh;x)− fh(x)| ≤ 9

2h2
w2
M (f, h)Sn,p,q((t− x)2;x)

≤ 9

2h2
w2
M (f, h)Sn,p,q((t− x)2;x)

≤ 9

2h2
w2
M (f, h)

x

[n]p,q
.(6.4)
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Setting h =
√

x
[n]p,q

and from (6.1), (6.3), (6.4), we get

wM |Sn,p,q(f ;x)− f(x)| ≤ Nmw2
M

(
f ;

√
x

[n]p,q

)
.

�

7. Statistical convergence

In this section, we obtain statistical convergence for new modified (p; q)-Szász-Mirakyan operators. We

need the following theorem [10] to prove statistical convergence of the operators on H ′ and we set all real

valued functions on real-valued functions on [0,∞) with condition |f(x)− f(y)| ≤ ω(|x− y|).

Theorem 7.1. Let Mn be the sequence of positive linear operators from H ′ into Cb[0,∞) with three condi-

tions

st− lim
n→∞

‖Mn(tj ;x)− xj‖Cb
= 0, j=0,1,2.

Then

st− lim
n→∞

‖Mn(f ;x)− f‖Cb
= 0.

Now, the result on statistical convergence of the operators defined in (2.12).

Theorem 7.2. Suppose that Sn,p,q(f ;x) is defined as in (2.12), where (pn) and (qn) are the sequences such

that pn → 1, qn → 1 and pNn → a, qN
′

n → b as n tending to infinity. Then

(7.1) st− lim
n→∞

‖Sn,p,q(f ;x)− f‖Cb
= 0.

Proof. From above theorem, we only have to prove that

st− lim
n→∞

‖Sn,p,q(tj ;x)− xj‖Cb
= 0, j = 0, 1, 2.

From the moments of Sn,p,q(f ;x), it is obvious that the result is true for j = 0, 1.

For j = 2,

‖Sn,p,q(t2;x)− x2‖Cb
≤ 1

[n]p,q
.

But

st− lim
n→∞

1

[n]p,q
= 0.

We define

U = {n : ‖Sn,p,q(t2;x)− x2‖Cb
≥ ε}

U1 = {n :
1

[n]p,q
≥ ε}.
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Clearly, U ⊆ U1.

Then

δ{k ≤ n : ‖Sn,p,q(t2;x)− x2‖Cb
≥ ε} ≤ δ{k ≤ n :

1

[n]p,q
≥ ε}

But the right hand side of the above inequality is zero because st− lim
n→∞

1

[n]p,q
= 0. Hence,

st− lim
n→∞

‖Sn,p,q(t2;x)− x2‖Cb
= 0.

The theorem is proved. �

8. Voronovskaya type result

Theorem 8.1. Let (pn) and (qn) be the sequences such that pn → 1, qn → 1 and pNn → a, qN
′

n → b as n

tending to infinity then for each function f, f ′, f ′′ ∈ C∗ϑ[0,∞)

(8.1) lim
n→∞

[n]p,q[Sn,p,q(f ;x)− f(x)] =
x

2
f ′′(x),

is uniformly convergent on [0, a], a > 0.

Proof. Consider Taylor’s formula on f ∈ C∗ϑ[0,∞)

f(t) = f(x) + (t− x)f ′x+ 1
2 (t− x)2f ′′(x) + P (t, x)(t− x)2,

where P (t, x) is Peano’s remainder, P (t, x)→ 0 as t→ x.

Now

[n]p,q[Sn,p,q(f ;x)− f(x)] = [n]p,qf
′(x)Sn,p,q((t− x);x)

+ [n]p,q
f ′′(x)

2
Sn,p,q((t− x)2;x) + [n]p,qSn,p,q(P (t, x)(t− x)2;x).

From Cauchy-Schwarz inequality,

Sn,p,q(P (t, x)(t− x)2;x) ≤
√
Sn,p,q((P 2(t, x);x)

√
Sn,p,q((t− x)4;x)

is satisfied. Since P (t, x) ∈ C∗ϑ[0,∞) and P (x, x) = 0,

lim
n→∞

Sn,p,q((P
2(t, x);x) = P 2(x, x) = 0,

uniformly convergent for x ∈ [0, a]. So

lim
n→∞

[n]p,qSn,p,q(P (t, x)(t− x)2;x) = 0

is obtained. Also

lim
n→∞

[n]p,qSn,p,q((t− x);x) = 0.
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and

lim
n→∞

[n]p,qSn,p,q((t− x)2;x) = x.

Hence,

lim
n→∞

[n]p,q[Sn,p,q(f ;x)− f(x)] =
x

2
f ′′(x).

�

9. Numerical Examples

Example 9.1. We compute the absolute error (A.E.) of Sn,p,q with the function f(x) = x2 − 5x + 10 and

g(x) = x3 − x+ 1 for the different values of n taking x = 1 and x = 2 in Table 1 and Table 2, respectively.

Also, the absolute error can be seen graphically in the Figure 5 and 6.

Table 1. A.E. of operators and function at x = 1

n |Sn,p,qf − f | |Sn,p,qg − g|

10 0.1252 0.3914

20 0.0798 0.2458

30 0.0673 0.2064

40 0.0633 0.1940

50 0.0631 0.1934

Table 2. A.E. of operators and function at x = 2

n |Sn,p,qf − f | |Sn,p,qg − g|

10 0.2505 1.5342

20 0.1596 0.9704

30 0.1346 0.8165

40 0.1267 0.7682

50 0.1263 0.7657
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Figure 5. Absolute error of Sn,p,q at x = 1.

Figure 6. Absolute error of Sn,p,q at x = 2.
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