
Knowledge-Based Systems 223 (2021) 107044

H

m
T
s
a
t
t
t
p
s
b
m

r
m
(

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Hybrid algorithms based on combining reinforcement learning and
metaheuristicmethods to solve global optimization problems
Amir Seyyedabbasi a,∗, Royal Aliyev b, Farzad Kiani c,e, Murat Ugur Gulle b,
asan Basyildiz b, Mohammed Ahmed Shah d

a Computer Engineering Department, Faculty of Engineering and Architecture, Beykent University, Istanbul, Turkey
b Computer Engineering Department, Faculty of Engineering, Istanbul Aydin University, Istanbul, Turkey
c Computer Engineering Department, Faculty of Engineering and Architecture, Istanbul Arel University, Istanbul, Turkey
d Computer Engineering Department, Faculty of Engineering, Istanbul Ayvansaray University, Istanbul, Turkey
e Software Engineering Department, Faculty of Engineering, Istinye University, Istanbul, Turkey

a r t i c l e i n f o

Article history:
Received 30 October 2020
Received in revised form 11 April 2021
Accepted 12 April 2021
Available online 22 April 2021

Keywords:
Metaheuristic algorithm
Reinforcement learning algorithm
Grey wolf optimization algorithm
Whale optimization algorithm
Q-learning

a b s t r a c t

This paper introduces three hybrid algorithms that help in solving global optimization problems
using reinforcement learning along with metaheuristic methods. Using the algorithms presented, the
search agents try to find a global optimum avoiding the local optima trap. Compared to the classical
metaheuristic approaches, the proposed algorithms display higher success in finding new areas as
well as exhibiting a more balanced performance while in the exploration and exploitation phases.
The algorithms employ reinforcement agents to select an environment based on predefined actions
and tasks. A reward and penalty system is used by the agents to discover the environment, done
dynamically without following a predetermined model or method. The study makes use of Q-Learning
method in all three metaheuristic algorithms, so-called RLI−GWO, RLEx−GWO, and RLWOA algorithms, so as
to check and control exploration and exploitation with Q-Table. The Q-Table values guide the search
agents of the metaheuristic algorithms to select between the exploration and exploitation phases.
A control mechanism is used to get the reward and penalty values for each action. The algorithms
presented in this paper are simulated over 30 benchmark functions from CEC 2014, 2015 and the
results obtained are compared with well-known metaheuristic and hybrid algorithms (GWO, RLGWO,
I-GWO, Ex-GWO, and WOA). The proposed methods have also been applied to the inverse kinematics
of the robot arms problem. The results of the used algorithms demonstrate that RLWOA provides better
solutions for relevant problems.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Metaheuristic algorithms are a group of nature-inspired opti-
ization algorithms that mimic the behavior exhibited in nature.
hey try to find the best solution in the global environment of a
earch space. Metaheuristic algorithms contain two exploration
nd exploration phases [1–3] and their main goal is to conduct
hese phases in a balanced manner to avoid early local optima
raps [4]. This aim is accomplished in a relatively acceptable
ime and with relatively less processing [5]. In the exploration
hase, the algorithms try to find the best area that offers suitable
olutions. The purpose of the exploitation phase is to find the
est solution in the explored area. Among well-known opti-
ization methods, Genetic Algorithm (GA) [6], Particle Swarm
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Optimization (PSO) [7], Harmony Search (HS) [8], Gravitational
Search Algorithm (GSA) [9], Grey Wolf Optimization (GWO) [5],
Battle Royal Optimization (BRO) [4], Black Widow Optimiza-
tion (BWO) [10], Whale Optimization Algorithm (WOA) [11],
Tunicate Swarm Algorithm (TSA) [12], Lion Optimization Algo-
rithm (LOA) [13], Political Optimizer (PO) [14], Firefly Algorithm
(FA) [15], Social Team Building Optimization (STBO) [16], Bar-
nacles Mating Optimizer (BMO) [17], Poor and Rich Optimiza-
tion (PRO) [18] can be listed. In most of the Non-Deterministic
Polynomial-Time (NP-hard) problems, optimization algorithms
find the optimal solution in high-dimensional search space prob-
lems, but they usually do not guarantee finding an exact solu-
tion [19–21]. In addition, No-Free-Lunch (NFL) [22] asserts that
there is no specific metaheuristic algorithm that can provide best
solution for every optimization problem. This means that if one
algorithm can solve one type of problem effectively, this does not
imply that it will be effective to solve another kind of problem.
As such, there is considerable demand to develop new meta-
heuristic algorithms that can be used in various problems. Many
optimization problems are concerned with extremely expensive
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bjective functions. It is well known that with the increase in
he dimensions of a problem, its search area grows exponentially,
nd therefore the complexity increases. Metaheuristic algorithms
an provide reasonable solutions in an acceptable time frame.
ecently, these algorithms have been applied successfully in
olving global optimization problem [23] as well as in various ap-
lications such as wireless networks [24], image processing [25],
ath planning [26], transistor analyses [27], neural networks [28],
eep learning [29], and software [30].
In recent years, Machine Learning (ML) algorithms have also

ome to the fore in solving the mentioned problems [31]. ML
ethods generally fall into three categories as is shown in Fig. 1;
upervised Learning, Unsupervised Learning, and Reinforcement
earning (RL). In RL algorithms, an agent is placed in a complex
nvironment to learn optimal actions. These algorithms train the
gent to perform various tasks in different environments [32]. Re-
nforcement agent observes the environment and provides feed-
ack to the search space. The agent is trained, afterwards, it
ses this training experience in its subsequent actions. Training
s carried out through different methods, as a result the agent is
xpected to be trained in the best way. Besides, the environment
s the place where the agent interacts in the system. As shown
n Fig. 1, RL methods are generally divided into model-free and
odel-based approaches, however, in general, model-free tech-
iques are considered [33,34]. Algorithms currently comprising
he model-free approaches can be categorized into two sub-
roups: policy-based, and value-based methods. The value-based
lgorithms are convenient to work in harmony with metaheuris-
ic algorithms [35]. This is because it is model-free and does
ot follow a specific policy, providing higher flexibility. In the
alue-based RL methods, a reinforcement agent does not have
ny prior knowledge about the environment [35] and it learns to
ecide based on its actions, and the experience gained, in order
o achieve its goal. In these methods, the agents are aware of
nly the tasks given to them. They have access to no answer
eys or model that they can train on, unlike the supervised and
nsupervised learning methods. Hence, the agent learns from
heir experience in the environment through methods, such as
eward and penalty. The reward–penalty is a measure of how
uccessful the action is in terms of completing the task goal.
herefore, reinforcement agent makes a decision based on their
chievements.
In value-based learning methods, Q-Learning method is one of

he famous algorithms. This algorithm is also used in the methods
roposed in this study. In the Q-Learning algorithm, the agent
ries to find the best action given its current state according to
value-based mechanism. The agent learns from its actions and
tates. In this algorithm, a predetermined policy is not necessary,
ince an RL agent takes random actions, then gets a reward or
enalty, and gradually an experience is constructed for agent
ased on its actions that lead to rewards. In the Q-Learning al-
orithm, a table called Q-Table is defined [36] and the agent tries
o update its state to select the best action based on the Q-Table
alues considering all possible actions that it can take. Therefore,
ach agent in action decides to either explore or exploit the
nvironment. In methods proposed in this study, the Q-Learning
lgorithm is used to make the exploration and exploitation phases
f metaheuristic algorithms more effective. At the same time,
etaheuristic algorithms store the information they obtain about

he search space throughout the iteration, which is necessary
or Q-Learning. Therefore, this study proposes three hybrid al-
orithms based on the combination of reinforcement learning
nd the metaheuristic algorithms that take advantage of both
ategories while eliminating and/or minimize their deficiencies.
ome differences between the metaheuristic and the RL based

lgorithms can be summarized as follows. t

2

(1) Although the functionality of metaheuristic algorithms is
effective in solving NP-hard problems, the design of an
appropriate environment and establishing the balance be-
tween the exploration and exploitation phases to find the
best solutions can often require deep expert knowledge.
RL algorithms can be used to discover good designs for
parameters of metaheuristic algorithms [5,31,33].

(2) RL-based methods have a high success rate in finding new
local areas when compared with metaheuristic algorithms
and tend to have a more balanced behavior when switching
between related phases. However, the learning process of
agent used in RL algorithms may take a long time. Meta-
heuristic algorithms do not have the learning process and
are better in this regard. Therefore, the combination of both
tends to provide a good solution to this problem [19,31,33,
37–39].

(3) Metaheuristic methods operate in a static search manner
as they use randomness and specific policies in certain
situations. Therefore, their dynamism is lower than RL-
based methods, especially value-based methods. Because,
in a value-based RL method, agent is online and discovers
the environment through a reward and penalty mechanism
without following any model or method [19,31,33,40].

In the proposed hybrid algorithms, Q-Learning method is imple-
mented in I-GWO [19], Ex-GWO [19], and WOA [11] algorithms,
and are named RLI−GWO, RLEx−GWO, and RLWOA. The aim of each
roposed algorithm is to solve global optimization problems as
he best solutions without falling into the local optimal trap. It
hould be noted that the proposed methods do not guarantee the
est solution since they do

(1) They try to find a better global solution and explore new
possible local areas. The search agents have a chance to find
other possible local optima in the desired search space to
later aid in finding the global optimal solution.

(2) They use, not only the parameter of the metaheuristic
algorithms, but also define another parameter, ensuring the
best transition decisions by balancing the exploration and
exploitation phases.

(3) The control of two phases to make more effective decisions
is handled by Q-Table, which tries to guide search agents
in finding new sections of the global search space to be
discovered.

(4) In order for the decisions taken by the agent to become
more regular and efficient two effective and dynamic pa-
rameters (learning rate, discount factor) are used.

(5) They increase the balance ratio between the exploration
and exploitation phases. At the same time their ability to
switch between exploration and exploitation phases, as
and when needed, make them more successful in finding
better solutions in the search space of related problems.

(6) They guarantee high performance in exploitation, which
ensures the fast convergence of the proposed hybrid algo-
rithm.

he rest of this paper is organized as follows. Section 2 describes
he related works. Section 3 explains the detail of the proposed
ethods. Section 4 reports the obtained results and analysis.
ection 5 examines the behavior and the performance of pro-
osed algorithms for inverse kinematics of robot arms. Finally,
onclusion and future works are given in the last section.

. Related works

Metaheuristic and RL-based hybrid studies are summarized in

his section. This hybridization, either, uses RL to develop the
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Fig. 1. Taxonomy of the reinforcement learning algorithms.
etaheuristic algorithm or, uses these metaheuristics to improve
he performance of RL techniques. Therefore, researchers try to
uggest new methods by using the advantages of the one or
he other to solve various problems. Solving global optimization
roblems has attracted the attention of many researchers and as
uch numerous studies have been proposed in the literature [41–
6]. In this paper, a few of the existing hybrid works based on the
ombinations of the RL and metaheuristic are detailed.
In [47], authors combined the standard PSO and Q-Learning

QL) algorithm. As a result of the QLPSO algorithm, every particle
cts as an independent agent and selects the optimal topology
ontrolled by Q-Learning in each iteration. Two QLPSO variants
ake different dimensions of the communication topology into
ccount. In PSO, the movement of a particle is repeatedly influ-
nced by the best previous solutions along with the best previous
eighbor’s best solution. In their study, QL has been integrated
nto PSO to choose the most suitable neighborhood size based
n reward from the search regions. Each particle is allowed to
ct as an agent and is considered as a search area. Another thing
o note is that each particle uses its own Q-Table. The status of
ach particle is visible in neighborhoods that can be selected to
orm a regular topology structure. Moving from one neighbor-
ood to another is an action, whereas advances in suitability and
iversity are the measurements of the reward. During repetitions,
ach particle acts as a learning substance and selects the best
eighborhood within a regular structure. The herd population size
s randomly started with an N and a D size. QL algorithm gives
he best neighbor topology (action) based on the state of the
urrent particle and instant reward. Each particle then updates its
peed and position separately. QLPSO repeats these steps until the
aximum number of function evaluations is achieved. Compared
ith the basic PSO, the main difference of QLPSO is that QL is

ncluded in the PSO to optimize performance by improving the
eighborhood structure during the search process.
In [48], authors have introduced so-called Gravitational Search

lgorithm (GSA-LA) based on Learning Automata (LA). The main
eason to develop this algorithm is that the evolutionary algo-
ithms get stuck on local optima. LA is a method that helps in
inding optimum action when there is more than one option
vailable. In LA, first, a potential action is chosen randomly from
set of potential actions. This choice is based on a certain distri-
ution probability. Later, the automation signal is used to update
he probability distribution for each potential action. The iterative
rocess for updating the signal provides the best answers through
earning. GSA is an evolution-based algorithm that is inspired by
he theory of gravity. The foundation of GSA is the physical laws
f the gravitational force between masses which direct lighter
asses to heavier masses. In the GSA, there are four particulars:
3

position, inertial mass, active gravitational mass, and passive
gravitational mass. Each mass position corresponds to a candidate
solution. The inertial and gravitational mass are calculated using
a fitness function. In the GSA-LA process, the G value usually
decreases with the decrease in the search area; however, the G
trend fluctuates throughout the evolutionary process. The general
trend is in line with the ‘‘answers over time’’ concept, which is
the main basis of the algorithm. It tries to find the best G value
for GSA-LA to find the best solution. Radical changes show that
GSA-LA has always recovered from local optima by increasing the
search area. Classical GSA is especially stuck in high-dimensional
test functions. In this case, it has no course of action that can help
it avoid local optima. LA makes it possible for GSA-LA to properly
use the G value, thereby helping the algorithm avoid local optima.

In [49], authors proposed an improved genetic algorithm with
reinforcement mutation named RMGA to solve Traveling Sales-
man Problem (TSP). This RMGA algorithm emphasizes the con-
struction of reinforcement mutation operator so-called RL-M us-
ing heterogeneous matching selection instead of random match-
ing selection of EAX (edge assembly crossover) by changing the
Q-Learning algorithm and applying it to the populace produced
from modified EAX. The EAX performs best in terms of inheri-
tance compared to other transitions. This algorithm is especially
useful for evolutionary algorithms in solving large TSP. In the
proposed method the reward of solution of TSP is dependent
on the distance between the two neighboring cities: shorter
the distance, higher the reward. The adjustments made to the
instance obtained from EAX using Q-Learning in RMGA is called a
reinforcement mutation. Unlike traditional Q-Learning, the rein-
forcement mutation considers looking for the next random city in
TSP. The authors claim, based on their experimental results, that
the proposed algorithm performs well for up to 3000 cities.

In [50], authors proposed a novel hybrid method using re-
inforcement learning along with grey wolf optimization. In this
study, ExpRate formula proves to be effective in solving numerous
optimization problems. Their match between states and actions
is typically nonlinear. For each wolf, 3 actions are suggested
to adapt the rate of exploration. (1) Increase the exploration
rate: It takes place as a result of the wolf’s self-confidence and
expertise. This action commonly happens when the wolf finds
itself succeeding in consecutive iterations. This increases its own
confidence and hence increases its exploration rate. (2) Decrease
the exploration rate: Agent’s oscillation of fitness may motivate
such action and it reflects wrong decision taken by the agent,
and hence, it should be cautious in its movements. (3) Keep
the exploration rate: The current exploration rate is kept static
as there is no motivation for either an increase or a decrease.
For state transitions of the agent, the authors propose to change
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he status of a search tool and then reposition the agent in the
earch field. This results in a new availability value. In such
ases, the history of the fitness values is used to determine the
ext action. From a feedback-based approach, the agent learns to
ove from a worst fitness area to an area with a good fitness
alue providing a positive feedback, while a negative feedback
s given in the contrasting case where the agent finds itself in a
orst fitness area. In their study, a GWO variant is recommended

or each agent (wolf), which learns the rate of discovery indi-
idually. Experienced GWO (EGWO) uses reinforcement learning
rinciples to learn what needs to be done in different situa-
ions of optimization and in various areas of the search area. A
eural network-based model was used to hold experience knowl-
dge, the recommended EGWO was compared to the original
WO, PSO, and GA in feature selection and weight adaptation
arameters.
In [51], authors proposed a novel Ant Colony Optimization

ACO) method applied in reinforcement learning methods. Within
he ant colony optimization, a family of evolutionary methods is
mployed to find the shortest path between a pair of nodes in
he graph. They use a system of ant iterations termed nt with
ants in each nt. Each ant creates a path from the start node S to
he target node T. In their Sub-goal termed Discovery, aspiring
rom a simple network world environment, the agent’s task is to
each goal states g from some starting states. In this environment,
door is a sub-goal and there are two rational possibilities, one

hat helps the agent in reaching the door, and the other helps it
et closer to the door. Upon applying the Ant System method to
he transition graph for this environment, after several iterations
f route creation from the beginning to the target node, a shorter
ath to the target node is found. In transitional graphs, which
ave a clear social structure, there are some edges, so-called
ottleneck edges, on the shortest path that act as a bridge be-
ween neighboring societies. The main step in the skill detection
lgorithm is to determine the edges of the bottleneck. Using
he definition of roughness, each edge is awarded a degree of
ottleneck. When edges are sorted based on the shortest path and
he roughness values in the list, the edges of the bottleneck have
he least roughness. The next step is to disconnect the edges of
he bottleneck from the others on the list. In the proposed method
hey analyze roughness growth in the list of edges classified in
he shortest path. The place where meaningful slope increases
re found by the stroke of bottleneck and edges other than a
ottleneck.
In [52], authors proposed an RL-based GWO method to find

he optimal path for Unmanned Aerial Vehicles (UAVs). Their
roposed method has four operations: exploration, exploitation,
eometric adjustment, and optimal adjustment, while changing
he state is an action. According to cumulative performance, the
ndividual state switching process is adaptive. If the execution of
he operation leads to better performance, a positive reward is
warded, in the contrary scenario, a negative feedback is given.
n this way, the Q-Table is updated. In their work, columns of
he Q-Table represent the actions and the rows illustrate the
tates (exploration, exploitation, geometric adjustment, and op-
imal adjustment). Every agent has its own Q-Table, ensuring the
ndependence of the learning process. In the exploration process,
ffinity parameter aw is set to a high value, forcing an individual
gent to perform a global search. Moreover, an agent is influenced
y three best current agents, working uniformly in exploration
ode to weaken the effect of the alpha wolf α. In the process
f exploitation, all agents move slowly towards the current best
ndividual. Therefore, aw is set with a very low ensuring local
earch around α. They also make sure that every agent gets af-
ected primarily by the alpha wolf during the exploitation mode.

he movements in geometric adjustment operation of agents are

4

influenced by the lead group and the aw parameter, while the
distribution of an agent items is scattered based on appropriate
fitness. When an agent is viewed as a set of coordinates, the
viability and safety of the UAVs flight path are greatly affected.
Moreover, the optimal adjustment operation on the problem of
three-dimensional UAVs route planning is performed in [52].
They benefit from the fact that the best flight path is often
associated with the straight path between the starting point and
the target point. When obstacles are present, optimal path is the
appropriate path near the straight path. This process updates all
dimensions of the current individual, starting with the (y-axis)
and elements (the ophthalmic axis) corresponding to the first
coordinate, moving them along the direction of the straight path.
If a better result is obtained every time, the element is refreshed,
otherwise, the model remains unchanged, and each waypoint is
triggered.

3. Proposed methods

Metaheuristic methods are very successful in solving NP-hard
and complex problems to find solutions of good quality in a
reasonable time [5,19]. The search agents in these algorithms
find the best solution based on the goal of the optimization
problem. Typically, the best solution is the maximum or mini-
mum score defined as a global optimum. In order to achieve the
global optimum point, search agents have to move through all
the points while ensuring no point exists with a better optimum
score than the selected point. Since the search agents search from
a random point, the algorithm guides the search agent in their
quest. Sometimes, these agents get trapped on a local optimum
confusing it with the global optimum. Therefore, the agent needs
to search further in the search space if it is to find the global
optimum. Exploration and exploitation phases are employed for
this purpose. With metaheuristic algorithms, search agents ex-
plore the search space during the exploration phase, whereas,
they decide upon the best solution during the exploitation phase.
It is important to note that a balance between these two phases
is of utmost importance.

In line with the purposes and reasons explained in Section 1,
this study proposes three hybrid algorithms based on the com-
bination of reinforcement learning and metaheuristic algorithms.
In this study, Q-Learning method is applied on the I-GWO, Ex-
GWO, and WOA algorithms, so-called RLI−GWO, RLEx−GWO, RLWOA,
in order to control exploration and exploitation using the Q-Table
and to solve global optimization problems. The reinforcement
agent uses the Q-Table values as guide to the search agents of
metaheuristic algorithms to decide between the exploration or
exploitation phases, being the two actions possible. This table
is updated using a reward and penalty mechanism. Details of
the proposed methods is explained Section 3.3. First, the three
metaheuristic algorithms used are summarized.

3.1. I-GWO and Ex-GWO

This subsection describes I-GWO and Ex-GWO algorithms,
which are used in the proposed hybrid methods. Both algorithms
are inspired from the grey wolves’ behavior in their natural
habitat. In nature there are four types of wolves in a pack: Alpha
(α), beta (β), delta (δ), and omega (ω). Each wolf has different
responsibilities in its pack. α wolf is the leader of the pack
whether male or female. β wolf is the leader of the pack when α

is absent, besides the β wolf helps the α wolf in commands and
feedbacks. The third type of wolf in the hierarchy is the δ wolf
that helps the pack in maintaining the dominance structure. The
wolves that do not belong to the aforementioned three levels are

termed as ω wolves [5]. The social behavior of the grey wolves,
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Fig. 2. Working mechanism considering exploration and exploitation (a) I-GWO, (b) Ex-GWO.
p
f

D

X

.e., encircling, hunting, and tracking a prey are simulated using
WO algorithm. Fig. 2 shows the working mechanisms of both
lgorithms considering their exploration and exploitation phases.
Eqs. (1) and (2) have been proposed to model a pray being

ncircled in I-GWO and Ex-GWO. Both equations are applied to
he respective algorithms in a similar fashion. In these equations:
indicates the current iteration, T is the maximum number of

terations, X⃗p is the position vector of the prey, X⃗ indicates the
osition vector of a wolf. Furthermore, D is a vector dependent on
he prey’s location. The coefficient vectors A⃗, and C⃗ are considered
o lead in encircling their prey (Eqs. (3) and (4)). These parameters
ontrol the tradeoff between exploration and exploitation phase
n both I-GWO and Ex-GWO. It should be noted that a⃗ linearly
ecreases from 2 to 0 over the course of iterations. This is done to
et closer to the solution range. r1 and r2 are the random vectors
n a range of [0,1]. a⃗ is used to improve the convergence speed,
efined by Eq. (5) for I-GWO and Eq. (6) for Ex-GWO algorithms
espectively. There are two possible states for each leader (alpha)
n the pack; attack or search. When |A⃗| is less than 1, the wolves
n the pack attack to hunt, otherwise they try to find a prey to be
unted. In this way, these algorithms try to find possible solutions
n the whole area.

The first metaheuristic algorithm employed in this study is I-
WO. The main difference between GWO and I-GWO lies in the
unting mechanism. The I-GWO assumes that the first wolf (al-
ha) has better knowledge of the preys’ position. Other wolves in
he pack follow the n−1 wolves before them so as to update their
osition relative to the prey. The α wolf guides the remaining
olves in the pack in hunting. Given this scenario, when the first
olf (α) is in the best position to the prey, the other wolves also

ollow the best path, otherwise, the remaining wolves get farther
way from the prey (Eqs. (7) to (9)). The success rate of the I-GWO
ay be not suitable in finding best solutions to some complex
5

roblems because it is heavily dependent on the position of the
irst wolf (α).

⃗ =

⏐⏐⏐C⃗ · −→Xp (t)− X⃗ (t)
⏐⏐⏐ (1)

⃗ (t+ 1) = X⃗p (t)− A⃗ · D⃗ (2)

A⃗ = 2a⃗ · r⃗1 − a⃗ (3)

C⃗ = 2 · r⃗2 (4)

a⃗ = 2
(
1−

t2

T 2

)
(5)

a⃗ = 2
(
1−

t
T

)
(6)

−→
Dα =

⏐⏐⏐−→Cα ·
−→
Xα − X⃗

⏐⏐⏐ (7)
−→
Xα = X⃗α −

−→
Aα ·
−→
Dα (8)

−→
Xn (t + 1) =

1
n− 1

n−1∑
i=1

Xi (t) ; n = 2, 3, . . .,m (9)

The second metaheuristic algorithm used in this paper is Ex-
GWO which is a modified version of GWO algorithm. In the
Ex-GWO, two-level hierarchy is proposed in the pack, where the
first three grey wolves (alpha, beta and delta) are in the first level
of the hierarchy and the remaining wolves (omega) are in the
second. This method has a strong effect on the hunting process,
particularly in crowded environments. In this method, the nth
wolf (n = 4, 5, . . . , m) updates its own position based on the first
three wolves and the n− 1 wolf before it. As such, the wolves in
the pack benefit from expanded knowledge regarding their preys’
position. In the hunting mechanism of Ex-GWO, the wolves try to
find the best solution by nearing the prey. Ex-GWO algorithm is
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Fig. 3. Working mechanism considering exploration and exploitation of WOA [53].
epresented mathematically in (Eqs. (10)–(12)).

⃗
α =

⏐⏐⏐C⃗1 · X⃗α − X⃗
⏐⏐⏐ , D⃗β =

⏐⏐⏐C⃗2 · X⃗β − X⃗
⏐⏐⏐ , D⃗δ =

⏐⏐⏐C⃗3 · X⃗δ − X⃗
⏐⏐⏐
(10)

X⃗1 = X⃗α − A⃗1 · D⃗α, X⃗2 = X⃗β − A⃗2 · D⃗β , X⃗3 = X⃗δ − A⃗3 · D⃗δ (11)

X⃗n (t + 1) =
1

n− 1

n−1∑
i=1

Xi (t) ; n = 4, 5, . . . ,m (12)

3.2. WOA

The WOA is the third nature-inspired metaheuristic algorithm
used in the proposed methods. It mimics the hunting mechanism
of whales (exploration) and uses a spiral bubble-net attacking
mechanism of humpback whales in finding the prey (exploita-
tion). Similar to most metaheuristic algorithms, in the exploration
phase, search agents are in the global search for optimal so-
lution whereas in the exploitation phase they perform a local
search. There are three phases in the hunting mechanism for
WOA namely, encircling, searching (for exploring), and attacking
(for exploiting) the prey. In the encircling phase, each whale up-
dates its position around the current best search agent. (Eqs. (13)
and (14)). In these equations X⃗∗ is the position vector of the
best solution obtained so far, and X⃗ is the position vector. The
functionality and purpose of the A⃗, C⃗ , and a parameters are the
same as in the GWO. There are two methods in the exploitation
phase (attacking of prey). A random value (p), assigned between 0
and 1, determines the performance of each of these mechanisms.
Shrinking encircling and spiral updating position mechanisms are
chosen from Eq. (17). Where D′ indicates the distance between
the whale’s prey and its best solution so far. In addition, b is a
constant used to define the shape of the logarithmic spiral, l is
a random number in [−1,1]. The exploration phase (searching
of prey) is also determined by a vector A⃗. If the value of |A| is
reater than 1, search agents are forced to find other global spaces
Eqs. (18) and (19)). Where X⃗rand is a random position vector (a
andom whale) chosen from the current population. The working
echanism considering exploration and exploitation phases of

he WOA is represented in Fig. 3.

⃗ =

⏐⏐⏐C⃗ · X⃗∗(t)− X⃗(t)
⏐⏐⏐ (13)

X⃗ (t + 1) = X⃗∗ (t)− A⃗ · D⃗ (14)

A⃗ = 2a⃗ · r⃗1 − a⃗ (15)
⃗ = 2 · r⃗2 (16)

X⃗ (t + 1) =
{

X⃗∗ (t + 1)− A⃗ · A⃗ if p < 0.5
′ bl ∗⃗

(17)

D · e · cos(2π l)+ X (t) if p ≥ 0.5

6

D⃗ =
⏐⏐⏐C⃗ · X⃗rand − X⃗

⏐⏐⏐ (18)

X⃗ (t+ 1) = X⃗rand − A⃗ · D⃗ (19)

3.3. Development of proposed hybrid algorithms: RLI−GWO, RLEx−GWO,
RLWOA

Q-learning algorithm, a value-based learning algorithm, is
used in each hybrid algorithm proposed in this study. This is
because Q-learning algorithm is very convenient to work in co-
ordination with metaheuristic algorithms [31,39]. In Q-Learning,
main task assigned to an agent is updating its states by taking ac-
tions with the highest Q-values at every step. In other words, the
best state is selected, among the states found, after calculating the
degree of benefit that results from being in each of the possible
states, for the next step. After each step, a reward or a penalty
is assigned to the agent based on its actions. Consequently,
the agent updates its Q-Table and prepares the table for the
next episode using the Bellman Equation (Eq. (20)). The general
schema of the reinforcement learning agent and environment
architecture is shown in Fig. 4.

Q(t+1) (st , at)← Qt (st , at)+ λ

[
rt+1 + γMaxQt(st+1,a) − Qt (st , at)

]
(20)

where st and st+1 represent the current and the next states
relatively, at is the current action. λ is learning rate value and
γ is the discount factor. In addition, λ and γ are a number
between 0 and 1. The λ defines how fast our algorithm should
learn whereas γ defines how much our algorithm learns from
its mistakes. Indeed, the learning rate determines the extent to
which newly acquired information overrides old information and
is used to control the convergence of learning process. On the
other hand, the discount factor determines the importance of
future rewards. Indeed, the discount factor is a constant that
represents how the agent will pay attention to rewards in the
distant future. It controls the importance of long-term rewards.
rt+1 is the immediate reward an agent is awarded or the amount
it is penalized for taking current action. Qt+1 is the Q-value pre-
estimated for the next state st+1. Hence, for solving the problem
using Q-Learning there are three essential components of this
algorithm: Reward Table, Q-Table, and Bellman Equation. Using all
these components, a particular problem can be solved as shown
in Algorithm 1.

In the Q-Learning algorithm, reward table matrix is used for
penalizing or rewarding an agent for its action/state compo-
sitions. This table can be provided by end-user, or similar to
the experiments performed in this study, a reward table can be
created using programming techniques based on the architecture
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X

Fig. 4. Reinforcement learning agent and environment architecture [34].

of the solving methods. The Q-Table matrix can be assumed as
experience of an agent. During the discovering phase, an agent
does not have any knowledge or experience about the environ-
ment that it belongs to. Expressing this mathematically, initially
all units of the Q-Table matrix are assigned a zero value (concisely
stating it is zero matrices). Each agent gains experience as they
explore the environment in specific episodes/iterations and up-
date the corresponding Q-Table matrix with a third component
(Bellman equation). Using this equation, the agent evaluates the
likeliness of getting closer to the solution by weighing every
possible next state and each possible action that can be taken
from that state.

In all the hybrid algorithm proposed in this study, the two
tables (Reward Table and Q-Table) are defined as two-dimensional
matrices. The reward matrix contains the positive (+1) or negative
(−1) reward for each state and action couples, while values inside
the Q-Table matrix describe the result of choices that are taken
by the RL agent in the previous episodes. The relevant reward
table and Q-Table are shown in Fig. 5. The proposed mechanism
helps in finding the most appropriate decision that can be made
during exploring and exploiting phases. One of the following four
options can take place in line with the most appropriate decision
taken.

(1) While the agent is in the explore state, it decides to stay in
explore (action)

(2) While the agent is in the exploit state, it decides to stay in
exploit (action)

(3) While the agent is in the explore state, it decides to transit
to exploit (action)

(4) While the agent is in the exploit state, it decides to transit
to explore (action)

As mentioned earlier, |A| parameter controls both the explo-
ration and the exploitation phases I-GWO, Ex-GWO, and WOA
algorithms. Value of |A| is used to detect if the agent currently
explores the prey in its search space or exploits it. However, in the
proposed hybrid algorithms, the Q-Table is also included along
with |A|, in the account and the most appropriate exploration
or exploitation decision are made according to the values in this
table. Indeed, in the proposed hybrid algorithms, |A| parameter
checks the phases and Q-value controls and then allows the most
appropriate decision to be made for exploring and exploiting.
When the most appropriate decision is made, it is applied to
the fitness function of the relevant problem or application. This
whole process continues until it either finds the best possible
solution or reaches the end of the defined iterations. In proposed
method, |A| parameter value and Q-values are compared to up-
date the position for each search agent in the metaheuristic algo-
rithms employed. In this step, the new fitness value follows two
mechanisms as are calculated using the respective equations. If
7

the Q-value of the exploration phase is less than the Q-value
of the exploitation value, Eqs. (21) to (23) are used, otherwise,
Eqs. (9), (12), (17) are used. Similarly, current fitness value and
new fitness value are compared to assign the reward value. If
the new fitness value is better than the current fitness value,
reinforcement agent gets a positive reward (+1), otherwise, as a
penalty the reward is negative (−1). In RLI−GWO, RLEx−GWO, and
RLWOA, fitness value is calculated utilizing Eqs. (21), (22), and
(23), respectively. Where σ is weighting parameter that is a value
between 0 and 1.

Accordingly, another important point considered is how much
and for how long reinforcement agent is allowed to be trained,
as well as the extent to which whatever it learned is effec-
tive in making its next decisions. Therefore, the agent in the
decision-making process needs to be trained. In order to make
the decisions taken more regular and efficient, the rewards and
penalties to be received by the relevant agent should be more
effective, assuming the discount factor value is slightly higher. On
the other hand, the learning rate parameter is started at a high
value and is decreased as the iterations progress. This way, this
rate for the agent that is just starting to learn is high in the first
iterations, but with time this agent will be able to use more and
more of its past experiences.

The most distinctive feature of the proposed method is its
ability to switch between exploration and exploitation phases as
and when needed. Due to this, it can be more successful in finding
better solutions in the search space of related problems. Besides,
they will be able to find the best solutions faster and be able
to explore and exploit in more effective local areas. Therefore,
they are likely to find solutions in an acceptable time and in
minimum number of iterations. This feature can be considered
as the most significant difference when compared to other meta-
heuristic algorithms. However, it should be kept in mind that
the proposed methods do not guarantee the best solution since
they do not employ deterministic approaches as is the case in
metaheuristic algorithms. A schematic example of the proposed
methods is presented in Fig. 6. The pseudocode and flowchart of
the proposed algorithm are presented in Algorithm 2 and Fig. 7,
respectively.

Xi (t + 1) =
1

n− 1

n−1∑
i=1

σiXi (t) ; n = 2, 3, . . .m (21)

⃗n (t + 1) =
1

n− 1

n−1∑
i=1

σiXi (t) ; n = 4, 5, . . .m (22)

X⃗ (t + 1) =
{

σ · X⃗∗(t)− A⃗ · D⃗ if p < 0.5
σ · (D′ · ebl · cos(2π l)+ X⃗∗(t)) if p ≥ 0.5

(23)

4. Results and discussion

4.1. Experiment setup

In this section, the simulation parameters and benchmark
functions information are detailed. The algorithms proposed in
this study are simulated using MATLAB and are performed on
a Core i7-5500 U 2.4 processor with 8 GB of RAM. The three
proposed algorithms (RLI−GWO, RLEx−GWO, and RLWOA) are com-
pared with five algorithms in the literature (GWO [5], RLGWO [52],
I-GWO [19], Ex-GWO [19], and WOA [11]). Each of the eight
algorithms is simulated under similar conditions with 10 inde-
pendent runs consisting of 30 search agents and 500 iteration
numbers. Ten (10) independent runs are performed to manage
the effects generated from random parameters in the methods
used. The value of the learning rate parameter is between 0 and
1. When this value is 0, it ensures that the agent does not learn
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anything, so it will only benefit from previous information. On the
other hand, when this value is selected 1, it will only consider
the most recent information that is learned. In the proposed
8

methods, learning rate parameter has the highest value in the
first iteration and it decreases as iterations progress. This enables
more learning in the first iterations and the learning rate goes
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Fig. 5. The reward table and Q-Table example of the proposed method.
Fig. 6. A schematic of the proposed method considering exploration and exploitation.
down as experience increases (the learning process depending on
the progress). Hence, in the proposed algorithms, it starts at 0.9
in the first iteration and later on this value reduces by a factor of
λ − (2λ/i − 1) in subsequent iterations. The lowest value it can
have is limited to 0.1. Where i is the iteration number. In addition,
gamma value is assumed 0.8. When gamma is 0, the agent acts
narrowly, using only the available rewards. Gamma value is close
to 1 in cases where long-term rewards are important. This value
was set to 0.8 based on experimental tests and as is the case in
similar studies [47,54–57]. The value of σ is between 0 and 1,
and in cases where it is required to have more than one weight.
Note that the σ values must be assigned so that their sum is 1.
In RLGWO, the sum of σ1, σ2, σ3 are 1 where σ1 is 0.6, σ2 is 0.3,
and σ3 is 0.1. The reduced weight indicates that the wolves are
affected according to their hierarchy in the relevant operation.
These weight values were assigned by trial and error according
to their importance. In the case in RLI−GWO, σi depends on the
9

number of wolves in a pack, it should be noted that by increasing
the iteration steps of the algorithm, the number of grey wolves’
changes. During the first iteration, i is 1 then σi = 1/i. In the
second iteration, σ1 is 0.7 and σ2 is 0.3. In I-GWO, the first wolf
(α) has a higher impact on the pack, so from the third iteration, σ1
is 0.5 and σi = 0.5/(i−1), where i is the iteration numbers (i > 2).
In the RLEx−GWO, σ1, σ2, σ3 are 0.6, 0.3, and 0.1, respectively. After
the third iteration, the σi value follows the σi = 1/i for the
remaining wolves in the pack. The RLWOA has a constant value
for all σi, which is assigned 0.6. For each of the proposed meth-
ods, these values have been assigned through the experimental
method relying on trial and error techniques. The results of the
proposed algorithms in this study and their comparison with the
other five algorithms are detailed in two sections of this paper.
One of them being the benchmark functions and the other, the
Kinematic problem.
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Fig. 7. The flowchart of the proposed hybrid algorithms.

Fig. 8. Typical 2D representations of various benchmark functions [5].

10
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T
B

able 1
enchmark functions used in the current study.
Func. Benchmark

Function
Formula Dim Range Optima

F1 Sphere f1(x) =
n∑

i=1

x2i 30 [−100,100] 0

F2 Schwefel 2.22 f2 (x) =
n∑

i=1

|xi| +
n∏

i=1

|xi| 30 [−10,10] 0

F3 Schwefel 1.2 f3 (x) =
n−1∑
i=0

{

j<i∑
j=0

xi}2 30 [−100,100] 0

F4 Schwefel 2.21 f4 (x) = maxi{|xi, 1 ≤ i ≤ n} 30 [−100,100] 0

F5 Generalized
Rosenbrock

f5 (x) =
n−1∑
i=1

[
100(xi+1 − x2i )

2
+ (xi − 1)2

]
30 [−30,30] 0

F6 STEP f6 (x) =
n∑

i=1

([xi + 0.5])2 30 [−100,100] 0

F7 Quartic f7 (x) =
n∑

i=1

ix4i + random[0, 1) 30 [−1.28,1.28] 0

F8 Generalized
Schwefel

f8 (x) =
n∑

i=1

−xi sin(
√
|xi|) 30 [−500,500] −418.9829*5

F9 Rastrigin f9 (x) =
n∑

i=1

[x2i − 10 cos (2πxi)+ 10] 30 [−5.12,
5.12]

0

F10 Ackley f10 (x) = −20 exp

⎛⎝−0.2
√ 1

n

n∑
i=1

x2i

⎞⎠− exp

(
1
n

n∑
i=1

cos(2πxi)

)
+ 20+ e 30 [−32,32] 0

F11 Griewank f11 (x) =
1

4000

n∑
i=1

x2i −
n∏

i=1

cos
(

Xi
√
i

)
+ 1 30 [−600,600] 0

F12 Generalized
Penalized

f12 (x) =
π

n

{
10 sin (πy1)+

n−1∑
i=1

(yi − 1)2
[
1+ 10 sin2 (πy1+1)

]
+ (yn − 1)2

}

+

n∑
i=1

u (xi, 10, 100, 4)

yi = 1+
xi + 1

4

u (xi, a, k,m) =

⎧⎪⎨⎪⎩
k(xi − a)m

0
k(−xi − a)m

xi > a
−a < xi < 1

xi < −a

30 [−50,50] 0

F13 Generalized
Penalized

f13 (x) = 0.1

{
sin2 (3πx1)+

n∑
i=1

(xi − 1)2
[
1+ sin2 (3πxi + 1)

]
+ (xn − 1)2

[
1+ sin2 (2πxni)

] }
+

n∑
i=1

u(xi, 5, 100, 4)

30 [−50,50] 0

F14 Shekel’s
Foxholes

f14 (x) = (
1

500
+

25∑
j=1

1

j+
2∑

i=1

(xi − aij)6
)−1 2 [−65,65] 1

F15 Kowalik’s f15 (x) =
∑11

i=1

[
ai −

x1(b2i + bix2)
b2i + bix3 + x4

]2
4 [−5,5] 0.00030

F16 Six-Hump
Camel-Back

f16 (x) = 4x21 − 2.1x41 +
1
3
x61 + x1x2 − 4x22 + 4x42 2 [−5,5] −1.0316

F17 Branin f17 (x) = (x2 −
5.1
4π2 x

2
1 +

5
π
x1 − 6)2 + 10

(
1−

1
8π

)
cos x1 + 10 2 [−5,5] 0.398

F18 Goldstein Price f18 (x) =
[
1+ (x1 + x2 + 1)2

×
(
19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22

)]
. [30

+ (2x1 − 3x2)2

×
(
18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22

)]
2 [−2,2] 3

(continued on next page)
11
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able 1 (continued).
Func. Benchmark

Function
Formula Dim Range Optima

F19 Hartman’s
Family

f19 (x) = −
4∑

i=1

ci exp

⎛⎝− 3∑
j=1

aij
(
xj − pij

)2⎞⎠ 3 [1, 3] −3.86

F20 Hartman’s
Family

f20 (x) = −
4∑

i=1

ci exp

⎛⎝− 6∑
j=1

aij
(
xj − pij

)2⎞⎠ 6 [0, 1] −3.32

F21 Alpine f21 (x) =
n∑

i=0

|xi sin (xi)+ 0.1xi| 30 [−10,10] 0

F22 Beale f22 (x) = (1.5− x0 + x0x1)2 +
(
2.25− x0 + x0x21

)2
+
(
2.625− x0 + x0x21

)2 2 [−4.5,4.5] 0

F23 Cigar f23 (x) = x20 +
n∑

i=1

x2i 30 [−10,10] 0

F24 Matyas f24 (x) = 0.25
(
x20 + x21

)
− 0.48x0x1 2 [−10,10] 0

F25 Michalewicz f25 (x) = −
n∑

i=0

sin (xi) sin20
(
ix2i
π

)2m

;m = 10 10 [0, π ] −9.66015

F26 Booth f26 (x) = (x0 + 2x1 − 7)2 + (2x0 + x1 − 5)2 2 [−10,10] 0

F27 Easom f27 (x) = − cos(x0) cos(x1) exp(− (x0 −Ω)2 − (x1 −Ω)2) 2 [−100,100] −1

F28 Sum Squares f28 (x) =
n−1∑
i=0

ixi 30 [−10,10] 0

F29 Egg crate f29 (x) = x2 + y2 + 25(Sin2
x + Cos2y ) 30 [0,10], [-2π ,

2π ]
0

F30 Zettl f30 (x) = (x2i + x2i+1 − 2xi)2 + 0.25xi 30 [−5,5] −0.00379
All of the three proposed algorithms are evaluated using 30-
enchmark functions and results are compared with five well-
nown algorithms, available in the literature. These benchmark
unctions are chosen from CEC 2014 and 2015 [58,59]. The first 21
enchmark functions are the classical functions utilized by many
esearchers [5,60–64]. The last 9 functions have been recently
iscussed in new studies [4,10,19,64]. The variety of the selected
unctions has been increased to increase the accuracy of, both,
he results obtained and the analysis performed. Generally, the
elected benchmark functions are divided into unimodal, mul-
imodal, fixed-dimension multimodal, and composite function
roups [5,11,19,60–63]. In this study, this variety of richness has
een used. Unimodal functions have one global optimum and
o local optima. Multimodal functions have more than one local
ptima. While these can be of various sizes, the fix-dimensional
nes are fixed-size function types, as highlighted by their name.
ew optimization algorithms or their enhanced versions are usu-
lly tested on any benchmark function. This way, performance
f proposed algorithms in various problems can be monitored.
ach benchmark function has a specific dimension size, moreover,
he boundary is important in the benchmark function. The range
f boundary indicates the lower and upper bounds of the search
pace. The details of all functions are presented in Table 1. Fur-
hermore, the 2D surface of the relevant benchmark is presented
n Fig. 8.

.2. Results analysis

Experimental results, of each proposed algorithm, are pre-
ented and discussed in this section. Tables 2, 3, and 4 present
he results obtained after 10 times run for each algorithm. The
erformance of each algorithm is calculated using the mean and
tandard deviation in each respective benchmark function. The
est results are illustrated in bold in the relevant tables. If more
han one best solution is found for a benchmark function, the
core is equally divided among the algorithms. For example, all
hree algorithms found the best solution in F1, and in this case,
12
each algorithm was awarded 0.33 points. Hence, the sum of the
scores achieved by all the algorithms will be equal to the sum of
the functions.

As shown in Table 2, RLI−GWO found best solution in F1, F3,
F9, and F10. Likewise, RLEx−GWO found best solution in F9 and
RLWOA found best solution in F5, F6, F8, and F9. In this table,
F1 to F7 are unimodal and F8 to F10 are multimodal functions.
It can be seen from the results of Table 2 that the number of
best solutions found by the proposed algorithms was not high
in unimodal functions compared to their metaheuristic versions.
This is in the nature of unimodal functions. This type of function
does not have more than one global optimum. Therefore, the
exploration and exploitation phases do not necessitate many
flexible optimized transitions and searching at different locals,
as a result, hybrid algorithms have not been better than their
metaheuristic counterparts. However, this does not mean that
hybrid algorithms are necessarily worst at unimodal functions.
For example, RLI−GWO found the best solution in F1 and F3, which
are unimodal, and on the other hand, RLWOA is the best in F5 and
F6.

In Table 3, comparison results of mean value and standard
deviation for function F11–F20 are presented. In F11, all algo-
rithms except GWO and RLGWO reach the optimum value. In
F12–F15, it is seen that, RLWOA performs better compared to other
algorithms. It demonstrates that RLWOA has a better balance in
exploration and exploitation phases, besides its added advantage
of being able to avoid getting stuck in the local trap. In F16–
F19 all algorithms reached the optimum value; these benchmark
functions are fixed dimension multimodal. In F20, RLWOA and
GWO have better performance. Overall, RLWOA has a better per-
formance for function F11–F20. As can be seen from the results,
the proposed algorithms, especially RLWOA, performed better than
others in these functions consisting of 10 multimodal and fixed-
dimensional multimodal. The main reason for this is presence of
more than one local in multimodal-based functions. The proposed
methods are likely to be better at such problems in line with the
features mentioned earlier.
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omparison results of simulations optimization algorithms for F1–F10.
Table 3
Comparison result of simulations optimization algorithms for F11–F20.
I
G
F

a
h
s
R
i

The results, reported in Table 3, consists of all types of func-
ions (F21 to F30). F24, F26, F28, and F30 are unimodal and
he other functions are multimodal in fixed or unfixed dimen-
ions. RLI−GWO found the best solution in F21, 23, 24, 27, 28, 30.
hereas, RLEx−GWO is best in F25, 27, 30 and RLWOA is better than
thers in F22, 27, 30. In F21, RLI−GWO and Ex-GWO give a better
olution. RLWOA obtains the best value for F22. In F23 I-GWO and
LI−GWO earned better mean value. In F24, RLI−GWO, and in F25,
LEx−GWO and in F26, GWO algorithms have better performance.
13
n F27 and F30, all algorithms reach the optima value. In F28, I-
WO, RLI−GWO, and Ex-GWO have obtained a better solution. In
29, RLGWO earned better value in comparison to others.
Fig. 9 is prepared as a percentage of the performance of each

lgorithm in finding the best solutions using the results that
ave been presented in the three tables given above. Overall, as
hown in Fig. 9(a), RLWOA has earned better values, and I-GWO,
LI−GWO, Ex-GWO, GWO, RLEx−GWO, RLGWO, and WOA are placed
n other ranks, respectively. According to these results, presented
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Table 5
Rank summary of statistical assessment results for F1–F30.
F GWO RLGWO I-GWO RLI−GWO Ex-GWO RLEx−GWO WOA RLWOA

F1 8 7 1 1 1 6 5 4
F2 8 7 1 3 1 6 5 4
F3 7 6 1 1 1 5 8 4
F4 7 6 1 3 1 5 8 4
F5 2 5 8 7 3 6 4 1
F6 4 3 8 7 5 6 2 1
F7 7 4 1 2 6 3 8 5
F8 3 4 8 5 7 6 2 1
F9 8 7 1 1 1 1 1 1
F10 8 7 1 1 1 4 6 5
F11 8 7 1 1 1 1 1 1
F12 3 4 8 6 7 5 2 1
F13 3 4 8 6 7 5 2 1
F14 3 4 7 8 5 6 2 1
F15 5 7 8 6 3 2 4 1
F16 1 1 1 1 1 1 1 1
F17 1 1 1 1 1 1 1 1
F18 1 1 1 1 1 1 1 1
F19 1 1 1 1 1 1 1 1
F20 1 4 8 7 5 6 3 1
F21 8 7 3 1 1 6 5 4
F22 2 8 5 7 6 3 4 1
F23 7 6 1 1 8 5 4 3
F24 7 6 2 1 8 5 4 3
F25 2 3 8 6 7 1 4 5
F26 1 2 5 6 4 3 7 8
F27 1 1 1 1 1 1 1 1
F28 8 7 1 1 1 6 5 4
F29 2 1 8 7 3 4 5 6
F30 1 1 1 1 1 1 1 1

in Fig. 9(a), the success rate performance of each algorithm was
calculated as a percentage based on finding the best solution for
each benchmark function. Based on the results obtained, it can be
noted that, RLWOA is generally better than other algorithms. RLWOA
lgorithm obtained the best solution in 17 out of 30 Benchmark
unctions compared to the other seven algorithms giving a 56.67%
uccess rate. It should be noted that, in the overall comparison,
14
RLWOA has a success rate of 32% amongst the algorithms com-
pared. As mentioned before, when more than one best solution
is found for a benchmark function, the score is equally divided
among the algorithms. Results show that RLWOA is 49% better than
the I-GWO algorithm, which is the second-ranked. At the same
time, the success rate of RLWOA is 54% better than RLI−GWO, 59%
etter than Ex-GWO algorithm, 76% better than GWO, 78% better
han RLEx−GWO, 84% better than RLGWO, and 88% better than WOA.

At the same time, the performance and success rate of each
lgorithm is compared in pairs in Fig. 9(b). This figure shows
he performance of the metaheuristic versions of the algorithms
ith RL-based hybrid versions, in comparison. The full mark is
warded to the best of the two. According to these results, the
ybrid versions were able to perform better in comparison to
heir non-hybrid counterparts, except for Ex-GWO algorithm. The
ain reason that Ex-GWO outperforms its hybrid version is that
lmost all wolves in the pack have an important role in each
ther’s position update. Therefore, the wolves in the pack min-
mize the escape paths of the hunt (prey), and hence, the hunts
an be caught faster. Based on this, even if a different mechanism
s applied to this structure, it may be less likely to find a better
nswer than the original version. The results of this study also
llustrate this analysis. The most important difference between
he other three pairs seems to be between WOA and RLWOA. The
LWOA also performed best for the benchmark functions in this
tudy. The main reason for its success is that the exploration
searching of prey) and exploitation (attacking of prey) phases
n WOA algorithm are less interdependent than the other three
etaheuristic algorithms. On the other hand, in the WOA algo-

ithm uses a threshold p, to exhibit different behaviors. In this
ay, the new RL-based hybrid mechanism (RLWOA) has made the
riginal algorithm more compatible and has even achieved better
erformance compared to all other algorithms.
Looking at particular result instances helps in understanding

ome values, in items (a) and (b) of Fig. 9, correctly. In Fig. 9(a),
he success of GWO algorithm is 7.5%, while the performance
ercentage of RLGWO is 5.8%. However, opposite result is seen
n Fig. 9(b) where RLGWO shows better performance compared
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Table 6
Pair-wise statistical comparison using Wilcoxon signed-rank test (a = 0.05).
F RLGWO vs GWO RLI−GWOvs I-GWO RLEx−GWOvs Ex-GWO RLWOA vs WOA

F1 + ∼ – +
F2 + – – +
F3 + ∼ – +
F4 + – – +
F5 – + – +
F6 + + – +
F7 + – + +
F8 – + + +
F9 + ∼ ∼ ∼

F10 + ∼ – +
F11 + ∼ ∼ ∼

F12 – + + +
F13 – + + +
F14 – – – +
F15 + + + +
F16 ∼ ∼ ∼ ∼

F17 ∼ ∼ ∼ ∼

F18 ∼ ∼ ∼ ∼

F19 ∼ ∼ ∼ ∼

F20 + – + +
F21 + + – +
F22 – – – +
F23 + ∼ + +
F24 + + + +
F25 – + + –
F26 – – + +
F27 ∼ ∼ ∼ ∼

F28 + ∼ – +
F29 + + – –
F30 ∼ ∼ ∼ ∼

Total of + signs 16 10 10 20
W
i
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to GWO. This result is obtained using a dual comparison of the
performance of GWO and RLGWO in each benchmark function in
ables 2, 3, and 4, over mean values. These values show that
LGWO was better than GWO on 16, worse in 8 and equal in 6
enchmark functions. Results further show that RLGWO algorithm
chieved a 63.3% share in success. Similar calculations and com-
arisons were applied to the other three pairs of algorithms. This
s presented in Table 6 from a different perspective.

In Table 5, the rank summary of each algorithm is presented.
n ranking summary, the mean fitness value is considered. Over-
ll, the proposed method (RLWOA) obtains a high-ranking value.
LWOA algorithm has shown more successful performance than
ther algorithms in balancing between two exploration and ex-
loitation phases. As in the Q-learning method, exploitation ac-
ion allows an agent to search in other local spaces. Furthermore,
pplying Q-learning with a metaheuristic algorithm allows the
etaheuristic search agent to search in other search spaces. In

his way, the exploration and exploitation balance are controlled
y Q-values in the Q-Table.
The results obtained for each algorithm are examined by a

ell-known non-parametric statistical test, namely the Wilcoxon
ank-sum test, that generates three signs ‘-’, ‘∼’, and ‘+’. The test
as conducted at a 0.05 significance level. Each hybrid (combi-
ation of RL and metaheuristic) algorithm is tested against its
riginal metaheuristic algorithm, specifically, RLGWO vs. GWO,
LI−GWO vs. I-GWO, RLEx−GWO vs. Ex-GWO, and RLWOA vs. WOA.
gain, results are obtained from Tables 2, 3, and 4 with 10
ndependent runs. A value of ‘–’ shows the obtained result of the
L-based algorithm is worse than the metaheuristic version of
he relevant algorithm. ‘∼’ indicates the obtained value of both
lgorithms is same, and ‘+’ implies that the obtained value of the
L-based algorithm is better than the metaheuristic version. The
L-based algorithms are considered for comparison as the basic
lgorithm. For instance, looking at results in Table 1 for function
presents ‘+’ for RLWOA vs. WOA. It means that the value obtained

or RLWOA for function 1 is better than the value obtained for
15
OA. An RL-based algorithm with a larger number of ‘+’ signs
ndicates that it is the best hybrid algorithm. The last row of
able 6 presents the total amount of ‘+’ signs for each RL-based
lgorithm. This shows the degree to which it is better than its
etaheuristic version. Based on this result, it shows that RLWOA

s better than others. The total amount of ‘+’ signs gained for each
unction, guides to reach the performance of the respective hybrid
lgorithm (RLGWO, RLI−GWO, RLEx−GWO, and RLWOA). In the same
ontext, the total amount of ‘-’ signs can show the analysis of each
etaheuristic algorithm (GWO, I-GWO, Ex-GWO, and WOA). The
core for the elements equal to ‘∼’ is evenly distributed between
he two algorithms. The results of this pairwise comparison have
lso been presented in Fig. 9(b).

.3. Convergence rate analysis

This section analyzes the convergence speed of each algo-
ithm used over some functions. The convergence curve also
hows the balance between exploration and exploitation phases.
onvergence curve analysis proves that metaheuristic algorithms
void trapping in local optima. Although the proposed RL-based
lgorithms have the same goals, they show more successful per-
ormances in this regard. In the exploration and exploitation
hases, the search agents visit new points in the exploration
hase. After this, in the exploitation phase, these points are
efined by the search agents to find the better solution. The
einforcement agent improves the search agents to use the points
n search spaces efficiently. Therefore, the proposed algorithms
re able to search better in the global space. Each of the eight
lgorithms’ convergence curve on select benchmark functions
s shown in Fig. 10. In the first steps of metaheuristics-based
ethods, the sudden movement changes of agents can help these
lgorithms overcome exploration. Then, these changes should
e reduced in the other phase at the end of optimization. As
forementioned, the rate of these changes naturally decreases as
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able 7
–H Kinematic Parameters of PUMA 560.
No ai (meters) di (meters) Range(◦)

1 0 0 −160 +160
2 0 0 −245 +45
3 0.4318 0.1491 −45 +225
4 0.0203 0.1331 −110 +170
5 0 0 −100 +100
6 0 0 −266 +266

iterations progress. According to [19,65], this behavior can guar-
antee that a metaheuristic algorithm eventually convergences to
a point in search space. In the metaheuristic algorithms, with
the control parameters available at exploration and exploitation
phases, they try to guide search agents in finding better global
solutions by fast convergence. In the proposed hybrid algorithms,
a mechanism based on Q-Learning tries to guide search agents in
finding new parts of the discoverable global search space. Based
on the convergence behavior analysis, it can be observed that
the search agents of RLWOA tend to extensively search promising
regions of the search spaces and exploit the best ones.

Fig. 11 presents the boxplot of each algorithm on F1, F5, F6,
15, F16, and F29. Boxplots are a standard method for displaying
ata distribution based on statistical indicators such as minimum,
irst quartile (Q1), median, third quartile (Q3), and maximum.
his diagram also provides information regarding the existence
f outlier data. Another purpose of this chart is to highlight
he symmetry in the data. Each box may have lines extending
rom boxes, these lines indicate the upper and lower quartiles,
ometimes these lines appear as points. In some boxplot figures,
here is space between the different parts of the box. This space
ndicates the spread and skewness in the data. The boxplots of
he proposed algorithms are shown in Fig. 11, for 10 independent
uns with a population size of 30, using 500 iteration per run.
sing the boxplot analysis, proposed algorithms was plotted with
alues from 10 different runs. In each metaheuristic algorithm
ased on the RL method, the distribution of the obtained value
s near to each other and more balanced.

. Proposed algorithms for inverse kinematics of robot arms

In this section, the proposed algorithms are applied to in-
erse kinematics of robot arms of the optimization problem. The
erformance evaluation of RL-based metaheuristic algorithms is
alculated with inverse kinematics of a robot arms. This problem
s also an important real-world engineering problem. The 6-DOF
UMA 560 robot arm has six joints. In the proposed problem, the
16
first three joints locate the end-effector, the remaining joints pro-
vide the orientation of the end-effector [66], shown in Fig. 12. The
Denavit–Hartenberg (D–H) parameters are presented in Table 7.
In this problem, the objective function is calculated using Eq. (24).
This equation describes the neighboring frames resulting from the
multiplication of the transformations.
0T6 = 0T1 1T2 2T3 3T4 4T5 5T6 (24)

In the Eq. (24), iTi+1 indicates the transfer matrix of link i. Carte-
sian coordinate for each joint angle is defined by 0T6 matrix. As
discussed earlier, this equation is used as a cost function. The Eu-
clidean distance between obtained and target points determines
the cost of the Cartesian coordinate. Eq. (25) shows the matrix
that results from running the 0T6 equation. In other words, the
result of Eq. (24) is a 4×4 transformation matrix given in Eq. (25).

0T6 =

⎡⎢⎣r11 r12 r13 px
r21 r22 r23 py
r31 r32 r33 pz
0 0 0 1

⎤⎥⎦ (25)

Each element of the 0T6 matrix is calculated employing Eq. (26).
The Cartesian coordinate (xs, ys, zs) and the target coordinate
(x, y, z) have been used to find the optimum angle value for
each joint given from the θ value. The ci indicates cos(θi) and
si indicates sin(θi). Furthermore, Eq. (25) converts joint angles θ

to the Cartesian coordinate (x′, y′, z ′). The cost of each angle is
calculated from the Euclidean distance between the initial and
current coordinates (Eq. (27)).

r11 = c1 [c23 (c4c5c6 − s4s6)− s23s5c6]+ s1(s4c5c6 + c4c6),
r21 = s1 [c23 (c4c5c6 − s4s6)− s23s5c6]− c1 (s4c5c6 + c4c6) ,

r31 = −s23 (c4c5c6 − s4s6)− c23s5c6,
r12 = c1 [c23 (−c4c5c6 − s4s6)+ s23s5c6]+ s1(s4c5c6 − c4c6),

22 = s1 [c23 (−c4c5c6 − s4s6)+ s23s5c6]− c1(s4c5c6 − c4c6),

32 = −s23 (c4c5c6 − s4s6)+ c23s5c6,

13 = −c1 (c23c4s5 − s23c5)− s1s4s5,

23 = −s1 (c23c4s5 + s23c5)+ c1s4s5,

33 = s23c4s5 − c23c5,

x = c1 [a2c2 + a3c23 − d4s23]− d3s1,

y = s1 [a2c2 + a3c23 − d4s23]+ d3c1,

z = −a3s23 − a2s2 − d4c23 (26)

=

√
(x′ − x)2 + (y′ − y)2 + (z ′ − z)2 (27)
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Fig. 10. The convergence curve of each algorithm in 500 iteration numbers.

Fig. 11. The boxplot of each algorithm.

17
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Table 8
The results of fitness function and joint variables by each algorithm.

θ1 θ2 θ3 θ4 θ5 θ6 Function value

GWO 19.842 −37.193 −1.787 78.657 52.772 55.905 8.14E−03
RLGWO −146.863 −111.790 3.8531 −104.408 64.927 10.855 1.94E−03
I-GWO −14.33 −34.46 −24.723 51.224 77.602 3.925 2.24E−03
RLI−GWO −32.887 −120.018 172.920 42.731 88.0947 −218.780 5.14E−03
Ex-GWO −19.901 −27.601 213.540 118.195 100 266 5.71E−03
RLEx−GWO 9.012 0.324 −40.983 −96.219 −48.565 233.375 4.61E−03
WOA −49.177 −90.802 59.189 88.642 45.293 50.620 1.13E−03
RLWOA 159.602 4.505 194.685 70.542 −52.521 −106.366 9.70E−04
Table 9
The obtained mean and standard deviation value for each algorithm.
Fig. 12. PUMA 560 Robot Arm [66].
18
Table 8 reports the comparative results of optimization algo-
rithms for the evaluation of inverse kinematic fitness function and
joint variables. The conducted experiment does not follow any
special set of associated parameters of all algorithms. With the
angles obtained, a function value is calculated for each algorithm.
In this scenario, the algorithm with the least value shows the best
performance. It is observed from Table 8 that RLWOA performs
well, compared to other algorithms on the basis of fitness evalu-
ations. These values have been obtained by 50 agent members in
1000 iterations for a single run.

The simulation results of the inverse kinematics of the PUMA
560 robot arm are presented in Table 9. The simulation is run
30 times independently with different search agents and various
iterations to evaluate the performance of each algorithm used
in this paper. To obtain trade-off parameters, experiments have
been conducted with different population sizes and iteration
counts. Population numbers are considered as 50, 100, 200, and
300. Each population was run in three different iterations (500,
1000, and 2000). According to the results, RL-based methods
performed better. In addition, the results obtained of hypothetical
cases show that RL is better than the other seven algorithms
WOA
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u
i
w

sed. RLWOA ranked first in solving the kinematics problem, find-
ng the best solution in 6 out of 12 cases. Also, in some scenarios
ith a large number of populations and iterations, RLEx−GWO

appears to perform relatively better than others.

6. Conclusion and future work

In this paper, three hybrid algorithms, which are the com-
bination of metaheuristic and reinforcement learning-based al-
gorithms, were presented. These algorithms are named RLI−GWO,
RLEx−GWO, and RLWOA. Utilizing the advantages of metaheuristics
and RL algorithms, at the same time trying to eliminate (or
minimize) their shortcomings, these algorithms aim at finding
better solutions with appropriate decisions between the explo-
ration and exploitation phases. The proposed algorithms can also
provide appropriate transitions between these two phases, each
exhibiting a more balanced behavior, and as a result, they exhibit
a good convergence rate. In the proposed hybrid algorithms, a
mechanism based on Q-Learning tries to guide search agents
in finding new parts of the global search space to be explored.
Q-Learning method was applied in I-GWO, Ex-GWO, and WOA
algorithms to reach optimal solutions employing a Q-Table In the
Q-Table, each action and task have a reward or a punishment,
where the current and previous information is compared. It is
used to guide the search agent in exploring the new global
environment from its exploitation phase(s). This way, the search
agents of proposed algorithms have a higher chance to move
in the search space compared to their metaheuristic versions.
With exploration, they discover a new global search space and
exploit it to find the new optimal value. Therefore, the pro-
posed algorithms have advantages compared to the metaheuristic
algorithms, which try to explore possible search space better.
Furthermore, the performances of the proposed algorithms were
analyzed, commented on, and compared to the other five al-
gorithms. The results obtained show that RLWOA algorithm is
more efficient in finding optimum solutions in 30 benchmark
test functions used the and Kinematic problem. The algorithms
proposed in this study are new in approach and can be used
in many problems in different fields. In particular, they may be
suitable for solving multi-objective problems and for applying in
concurrent or parallel systems. Therefore, in future, the proposed
algorithms can be used to solve various real-world problems
such as mechanical engineering, optimization in electronic circuit
designs, optimization in feature selection, optimization in IoT, and
wireless sensor network routing algorithms.
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