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Abstract

Let A be a Banach f —algebra. In this paper we are interested in A— linear operators on a
Banach A —module.
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Introduction

Let A be aBanach f—algebra and let X be a Banach space. By L(X) we denote the set of

all continuous linear opeartors from X into X . The topological dual of X will be denoted
by X'. We say that X isaBanach A—module if there exists a bilinear mapping

p:AxX > X

satisfying the following conditions :
(a, x) >ax fying g
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(i)1x=x for all xeX,1leA,
(i) (ab)x=a(bx) for all a,beA, xeX,

(iii ) Jax| < [all|x| for all acA, xeX.

Bilinear mapping p induces m: A—L(X) , (a x)—>ax=m(a)x, is a unital, norm |.|to

strong operator topology continuous, algebra homomorphism. Hence, we accomplish the
following three other bilinear mappings :

WX xX' > A

(x, f)>(x.f)a)=f(ax), for xeX, feX',acAh;
(2)A"x X' - X'

(a,f)>(af)x)=a(x.f), for acA”, feX' acAh;
(B) A" X" — X"

(a,z)—>(az)f)=z(af), for acA”,zeX", feX'

When X is taken as A, then (3)becomes the Arens product on A”". The bilinear mapping
(2) defines a Banach A- module structures on X' that gives a homomorphism

m": A"—>L(X') defined by m"(a)f =a.f. The bilinear mapping (3) defines a Banach
A”— module structure on X". These are called the Arens extensions of the module
multiplication X ,[6].

Lemmal: Let X be aBanach A— module. The following assertions are true :

(i) Foreach ae A,

m“(a)=(m(a)) , where (m(a))" is the adjoint of m(a).
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(i) X' isaBanach A”—module.

(iii) X" isaBanach A" —module.
(iv) For acA”, m"(a) is continuous from X [o(X’, X )] into X [o(X", X)].

(v)m* is continuous from A’[o(A”, A)] into L(X')w'ot| , where wot is the weak *
operatOr topology.

Proof:

(i) For all ac A,
m*(a)f =a.f
[m (@) Jx)=(a.F Xx)
—a(f.x)
_ f(ax)
= f(m(a)x)
= ((m(@))" £ J)
(i) -To show 1.f =f for all f e X',1c A"
(L.1)X)= F(L.x)= F(x) then,
1.f=1.

- To show (a"b”).f =a"(b".f) forall a”",b”"c A" and f X’
Take a",b"e A" and a,,a;eA as
lima, =a"

H N
lim a, =b
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lim(a,a,)=a"b" then,
(a,a,)f=a,(a,.f)
lim(a,a,) f =lima,(a,.f) and,
@) f —a’(0"f).
- Weclaim |a".f|<|a’]|f| for all a"cA” ve feX’

Since mapping p is bilinear continuous, mappings (1), (2), (3) are bilinear continuous too.
So, [a”".f|<|a"||f]-

(iii) we can prove this same with (ii).

(iv) Let we take a, A as a, —>a . Then, for all f € A", to operator topology
o(A", A)is a,(f)—a(f).

For m*: A" - L(X"),

When we take a, —a for x';

a,.x'—ax’ Dby the continuity of (3)

(m*(a, )x')x = (m"(a)x’)x and

m'(a,)—>m"(a). Then m':A"—L(X’) is continuous from A’[c(A", A")] into
L(X)|w ot |.

Definition 2 [1]: Let X be aBanach A— module, xeX . Then,

A(x)=Cl, {a.x raeA, |[a Sl},

where Cl, denotes the closure in X . Let Y be a subspace of X .Y iscalled an ideal if
for each xeY, A(x)eY. Let X be a Banach A— module and let feX’, then
A(f)=Cl,.{a.f : aeA”, |a] <1}, where Cl,, denotes the closure in X'.
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Definition 3 [1]: Let X be a Banach A— module and x,yeX. x,y(x_Ly) is called
disjoint if A(x+y)=A(x)+A(y) and A(x)NA(y)={0}. Let X be a Banach A —module
and let Y be a Banach A, —module and suppose that T: X —Y is a linear operator. Then
T is called disjointness preserving operator ( d-homomorphism ), if x L z implies Tx LTz.

Let X,Y be two Banach A—modules ( with the same A ). A linear continuous
operator T: XY is called A-linear (or a A-orthomorphism) if
T(ax)=aTx, for all ac A, xe X . Take A=C(K). Then, if a linear operator T: X —Y is
an A- linear, then adjoint T" of T is disjointness preserving operator from Y’ into X’

[4].

Theorem 4 : Let X,Y be two Banach A— modules. If a linear operator T: X —»Y is an
A— linear, then its continuous adjoint operator T':Y'— X' isan A”"— linear operator.

Proof : Firstly , let us satisfy that T'(a.y’)=aTy'for ac A, y’eY’ . Take an arbitrary
x e X, we show that T' (a.y’)\x)=(aT"y"Xx).

T’ (ay')\x)=(ay’XTx)=y'(aTx) ( by the bilinear mapping (1))

= y'(T(ax)) ( by the A—linearity )
T'y'(ax)=a(xTYy’) ( by the bilinear mapping (1) )
=(@Ty'Xx) ( by the bilinear mapping (2) ).

Hence, T' is a A— linear. It is well-known that A is |of(A”, A’)—dense in A"[2]. Let
ae A". There exists a net {aa}in A such that a, —>a in o(A", A'). By the continuity of
the bilinear mapping (2), we get a,.y'—a.y’ for a.y’eY’. Since T' is continuous, it
follows that T'(a,.y’)—>T'(ay’) By the first case, we have T'(a,.y’)=a,Ty’. By the
bilinear mapping (2), a, Ty —aTy’ and hence T'(ay’)=aTy’. Therefore, T'is
A" —linear.

Proposition 5 : Let X be a Banach A—module and let T:X — X be a A-linear
operator. Then,
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Txx'=xTX forall xe X,x"e X', where T". X" — X' is continuous adjoint of T .
We can prove this proposition by using the bilinear mappings (2) and p.

Let X be a Banach A—module. Then , we define the set Orth,(X) as the set of all
A —linear mappings.

Corollary 6 : If T €Orth,(X), then T" €Orth,, (X").

Suppose that X is a Banach A—module. Then we define the set W(X ') as the set of all

continuous linear operators T': X' — X' such that TE — E for each w*- closed ideal E of
X" . In particular, we get the following corollary:

Corollary 7 [5]: Let X be a Banach C(K)- module. Then, W(X')=0rth. ., (X") .

Proof : Assume that T €W (X'). Then, it is easy to see that T is a C(K )—linear. Using that
C(K) is |a|[C(K)”,C(K),j dense in C(K) and continuity of T, we see that

W(X")c OrthC(K)n (X"). For the converse inclusion, we use Lemma 9.7 of [1], or Theorem 2
of [3].
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