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Abstract 

 

Let A  be a Banach f algebra. In this paper we are interested in A linear operators on a 

Banach  A module. 
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Introduction 
 

Let A   be a Banach f algebra  and let X  be a Banach space. By  XL  we denote the set of 

all continuous linear opeartors from X  into X . The topological dual of X  will be denoted 

by X  . We say that X  is a Banach  uleA mod  if there exists a bilinear mapping  

 

 

  xaxa

XXAp

.,

:




     satisfying  the following conditions : 
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Bilinear mapping p  induces  XLAm :   ,      xamxaxa  ., , is a unital, norm  . to 

strong operator topology continuous, algebra homomorphism. Hence, we accomplish the 

following three other bilinear mappings : 
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        When X is taken as A , then (3)becomes the Arens product on A  . The bilinear mapping 

(2) defines a Banach A module structures on X   that gives a homomorphism 

 XLAm :*
  defined by   fafam .*  . The bilinear mapping (3) defines a Banach    

A module structure on X  . These are called the Arens extensions of the module 

multiplication X ,[6]. 

 

 

Lemma 1 : Let X be a Banach A  module. The following assertions are true : 

 

 i  For each Aa ,  

 

    ** amam   ,   where   *am   is the adjoint of  am . 
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 ii  X    is a Banach A module. 

 

 iii  X   is a Banach A module. 

 iv  For  amAa *,   is continuous from   XXX ,   into   XXX ,  . 

 

  mv  is continuous from   AAA  , into   twXL *  ,  where  tw *  is the weak * 

operatör topology. 

 

Proof: 

 

 i  For  all Aa ,  

 

 

      
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 ii     - AXfallforffshowTo  1,.1  

 

        

      
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          -     XfandAbaallforfbafbashowTo  ,..    

 

AbaTake  ,  and   Aaa  ,  as  

 

aa lim  

 

ba lim    . 
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  baaa  .lim  then , 

 

   faafaa ...      

 

   faafaa .lim..lim     and, 

 

   fbafba ....  . 

 

           -  We claim XfveAaallforfafa .  

 

 Since mapping p  is bilinear continuous, mappings (1), (2), (3) are bilinear continuous too. 

So,   fafa . . 

 

 iii   we can prove this same with  ii . 

 

 iv   Let  we take Aa 
 as aa 

 . Then, for all Af  ,  to operator topology 

 AA  ,  is     fafa   . 

 

For   XLAm  : , 

 

When we take aa 
 for  x ; 

 

xaxa  ..
    by the continuity of (3) 

  

     xxamxxam  **


 and 

 

   amam ** 
. Then  XLAm  :  is continuous from   AAA  , into 

  twXL * . 

 

 

Definition  2 [1]: Let X  be a Banach A  module ,  Xx . Then , 

 

   1,:.  aAaxaClx X ,  

 where XCl   denotes the closure in X . Let Y  be a  subspace of  X . Y   is called an ideal if 

for each   ., YxYx   Let X  be a Banach A  module and let ,Xf   then 

   1,:.   aAafaClf X  ,  where XCl   denotes the closure in X  . 
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Definition 3 [1]:  Let X  be a Banach A  module  and  Xyx , .   yxyx ,  is called 

disjoint if             0 yxandyxyx  . Let X be a Banach 1A module 

and let Y  be a Banach 2A module  and suppose that YXT :   is a linear operator. Then 

T  is called disjointness preserving operator ( d-homomorphism ),  if zx   implies  TzTx . 

 

          Let YX ,   be two Banach A modules  ( with the same A  ).  A  linear continuous 

operator  YXT :   is called A linear (or a orphismortA hom ) if  

  XxAaallforTxaxaT  ,,.. . Take  KCA  . Then, if a linear operator YXT :  is 

an  A linear, then adjoint T    of T  is disjointness preserving operator from XtoinY 

,[4]. 

 

 

Theorem 4 : Let  YX , be two Banach A modules. If  a linear operator  is an

A linear, then its continuous adjoint operator  XYT :   is an A linear operator. 

 

  

Proof : Firstly , let us satisfy that   yTayaT  .. for YyAa  ,   . Take an arbitrary 

Xx , we show that      xyTaxyaT  .. . 

 

        TxayTxyaxyaT ...     ( by the bilinear mapping (1) ) 

 

                    =   xaTy .                  ( by the )linearityA  

 

       yTxaxayT  ..                      ( by the bilinear mapping (1) ) 

 

                    =   xyTa .                   ( by the bilinear mapping (2) ). 

 

Hence, T   is a A linear. It is well-known that A  is   AA , dense in A  [2]. Let 

Aa  . There exists a net   Aina  such that aa   in  AA  , . By the continuity of 

the bilinear mapping (2), we get yaya  ..  for Yya . . Since T   is continuous, it 

follows that    ... yaTyaT 
  By the first case, we have   yTayaT  ..  . By the 

bilinear mapping (2), yTayTa  ..  and hence   yTayaT  .. . Therefore, T  is                    

A linear. 

 

 

Proposition 5 : Let X be a Banach A module and let  XXT :  be a A linear  

operator. Then, 

 

YXT :
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xTxxTx  ..  for all ,, XxXx  where XXT :  is continuous adjoint of T . 

We can prove this proposition by using the bilinear mappings (2) and p . 

 

Let X be a Banach A module. Then , we define the set  XOrthA  as the set of all          

A linear  mappings. 

 

 

Corollary 6 : If  ,XOrthT A  then  XOrthT A
  . 

 

 Suppose that X is a Banach A module. Then we define the set  XW   as the set of all 

continuous linear operators  XXT :   such that ETE   for each 
w - closed ideal E  of 

X  . In particular, we get the following corollary: 

 

 

Corollary 7 [5]: Let X be a Banach  KC module. Then ,     XOrthXW KC
 )(  . 

 

Proof : Assume that  XWT  . Then, it is easy to see that T is a  KC linear. Using that 

 KC is     




 

KCKC ,  dense in  KC and continuity of T , we see that 

 
 

 XOrthXW
KC

  . For the converse inclusion, we use Lemma 9.7 of [1], or Theorem 2 

of [3]. 
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