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Abstract By analyzing 2.93 fb−1 of data collected at√
s = 3.773 GeV with the BESIII detector, we measure

the absolute branching fraction B(D+ → K̄ 0μ+νμ) =
(8.72 ± 0.07stat. ± 0.18sys.) %, which is consistent with pre-
vious measurements within uncertainties but with signif-
icantly improved precision. Combining the Particle Data
Group values of B(D0 → K−μ+νμ), B(D+ → K̄ 0e+νe),
and the lifetimes of the D0 and D+ mesons with the
value of B(D+ → K̄ 0μ+νμ) measured in this work, we
determine the following ratios of partial widths: �(D0 →
K−μ+νμ)/�(D+ → K̄ 0μ+νμ) = 0.963 ± 0.044 and
�(D+ → K̄ 0μ+νμ)/�(D+ → K̄ 0e+νe) = 0.988±0.033.

1 Introduction

Experimental studies of D semileptonic decays provide help-
ful information to understand D decay mechanisms. Their
decay branching fractions (B) can serve to test isospin con-
servation and leptonic universality in D semileptonic decays.
Isospin conservation implies that the partial widths (�) of
D0 → K−μ+νμ and D+ → K̄ 0μ+νμ should be equal.
Furthermore, Ref. [1] predicts that �(D → K̄μ+νμ) is
less than �(D → K̄ e+νe) by about 3 % due to different
form factors and phase space. Using the branching frac-
tions and the lifetimes of the D0 and D+ mesons (τD0 ,
τD+ ), taken from the Particle Data Group (PDG) [2], we
obtain �(D0 → K−μ+νμ)/�(D+ → K̄ 0μ+νμ) = 0.91 ±
0.07 and �(D+ → K̄ 0μ+νμ)/�(D+ → K̄ 0e+νe) =
1.04 ± 0.07, where the uncertainties are dominated by
B(D+ → K̄ 0μ+νμ) [2]. Thus, an improved measurement of
B(D+ → K̄ 0μ+νμ) will be helpful to understand D decay
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mechanisms with better accuracy. In addition, the improved
B(D+ → K̄ 0μ+νμ) can also be used to precisely determine
the form factor f K+ (0) and the quark mixing matrix element
|Vcs | from D semileptonic decays [3].

Previous measurements of B(D+ → K̄ 0μ+νμ) come
from MARKIII [4], FOCUS [5] and BESII [6]. In this paper,
by analyzing 2.93 fb−1 of data [7,8] collected at the center-
of-mass energy of

√
s = 3.773 GeV by the BESIII detec-

tor [9], we determine the absolute branching fraction of
D+ → K̄ 0μ+νμ. Throughout the paper, charge conjugation
is implied.

2 BESIII detector and Monte Carlo

The BESIII detector is a cylindrical detector with a solid-
angle coverage of 93 % of 4π that operates at the BEPCII col-
lider. It consists of several main components. A 43-layer main
drift chamber (MDC) surrounding the beam pipe performs
precise determinations of charged particle trajectories and
provides a measurement of the specific ionization energy loss
(dE/dx) that is used for charged particle identification (PID).
An array of time-of-flight counters (TOF) is located radially
outside the MDC and provides additional PID information.
A CsI(Tl) electromagnetic calorimeter (EMC) surrounds the
TOF and is used to measure the energies of photons and elec-
trons. A solenoidal superconducting magnet located outside
the EMC provides a 1 T magnetic field in the central track-
ing region of the detector. The iron flux return of the magnet
is instrumented with about 1272 m2 of resistive plate muon
counters (MUC) arranged in nine layers in the barrel and
eight layers in the endcaps that are used to identify muons
with momentum greater than 0.5 GeV/c. More details about
the BESIII detector are described in Ref. [9].

A GEANT4-based [10] Monte Carlo (MC) simulation
software package, which includes the geometric description
of the detector and its response, is used to determine the detec-
tion efficiency and to estimate the potential backgrounds. An
inclusive MC sample, which includes the D0 D̄0, D+D−,
and non-DD̄ decays of ψ(3770), the initial state radiation
(ISR) production of ψ(3686) and J/ψ , the qq̄ (q = u, d, s)
continuum process, the Bhabha scattering events, and the di-
muon and di-tau events, is produced at

√
s = 3.773 GeV. The

ψ(3770) decays are generated by the MC generator KKMC
[11,12], in which ISR effects [13,14] and final state radi-
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ation (FSR) effects [15] are simulated. The known decay
modes of the charmonium states are generated using Evt-
Gen [16,17] with the branching fractions set to PDG values
[18], and others are generated using LundCharm [19]. The
D+ → K̄ 0μ+νμ signal is simulated with the modified pole
model [20].

3 Method

In e+e− collisions at
√
s = 3.773 GeV, the ψ(3770) reso-

nance decays predominately into a D0 D̄0 or a D+D− pair.
In an event where a D− meson (called the single tag (ST)
D− meson) is fully reconstructed, the presence of a D+
meson is guaranteed. In the systems recoiling against the
ST D− mesons, we can select the semileptonic decays of
D+ → K̄ 0μ+νμ (called the double tag (DT) events). For a
special ST mode i , the ST and DT yields observed in data
are given by

Ni
ST = 2ND+D−Bi

STεiST, (1)

and

Ni
DT = 2ND+D−Bi

STB(D+ → K̄ 0μ+νμ)εi
ST,D+→K̄ 0μ+νμ

,

(2)

where ND+D− is the number of D+D− pairs produced in
data, Bi

ST and B(D+ → K̄ 0μ+νμ) are the branching frac-
tions for the ST mode i and the D+ → K̄ 0μ+νμ decay, εiST is
the efficiency of reconstructing the ST mode i (called the ST
efficiency), and εi

ST,D+→K̄ 0μ+νμ
is the efficiency of simul-

taneously finding the ST mode i and the D+ → K̄ 0μ+νμ

decay (called the DT efficiency). Based on these two equa-
tions, the absolute branching fraction for D+ → K̄ 0μ+νμ

can be determined by

B(D+ → K̄ 0μ+νμ) = N tot
DT

N tot
ST ε̄D+→K̄ 0μ+νμ

, (3)

where ε̄D+→K̄ 0μ+νμ
= ∑

i (N
i
STεi

ST,D+→K̄ 0μ+νμ
/εiST)/N tot

ST

is the averaged efficiency of reconstructing the D+ →
K̄ 0μ+νμ decay by the ST yields in data.

4 ST D− mesons

The ST D− mesons are reconstructed using six hadronic
decay modes: K+π−π−, K 0

Sπ
−, K+π−π−π0, K 0

Sπ
−π0,

K 0
Sπ

+π−π− and K+K−π−. The decays of K 0
S and π0

mesons are identified in K 0
S → π+π− and π0 → γ γ ,

respectively.
All charged tracks used in this analysis are required to be

within a polar-angle (θ ) range of |cos θ | < 0.93. Except for
those from K 0

S decays, all tracks are required to originate
from an interaction region defined by Vxy < 1.0 cm and
|Vz | < 10.0 cm, where Vxy and |Vz | refer to the distances of
closest approach of the reconstructed track to the Interaction
Point (IP) in the xy plane and the z direction (along the beam),
respectively.

The charged kaons and pions are identified by the dE/dx
and TOF information. The combined Confidence Levels for
pion and kaon hypotheses (CLπ and CLK ) are calculated,
respectively. A charged track is identified as a kaon (pion) if
the confidence levels satisfy CLK > CLπ (CLπ > CLK ).

The charged tracks from K 0
S decays are required to sat-

isfy |Vz | < 20.0 cm. The two oppositely charged tracks are
assigned as π+π− without PID. The π+π− pair is con-
strained to originate from a common vertex and is required
to have an invariant mass within |Mπ+π− − MK 0

S
| < 12

MeV/c2, where MK 0
S

is the K 0
S nominal mass [2]. The K 0

S
candidate is required to have a decay length larger than 2
standard deviations of the vertex resolution away from the
IP.

Photon candidates are selected using the information from
the EMC. It is required that the shower time be within 700 ns
of the event start time, the shower energy be greater than
25 (50) MeV if the crystal with the maximum deposited
energy in that cluster is in the barrel (endcap) region [9],
and the opening angle between the candidate shower and
any charged tracks be greater than 10◦. To reconstruct π0,
the invariant mass of the accepted γ γ pair is required to
be within (0.115, 0.150) GeV/c2. To improve resolution, a
kinematic fit is performed to constrain the γ γ invariant mass
to the π0 nominal mass [2].

To identify the ST D− mesons, we define two variables,
the energy difference 
E = EmKnπ − Ebeam and the beam

energy constrained mass MBC =
√
E2

beam − | �pmKnπ |2 of
the mKnπ (m = 1, 2; n = 1, 2, 3) final states, where Ebeam

is the beam energy, �pmKnπ and EmKnπ are the measured
momentum and energy of the mKnπ final state in the e+e−
center-of-mass frame. For each ST mode, if there is more than
one combination surviving, only the one with the minimum
|
E | is kept. To suppress combinatorial backgrounds, 
E
is required to be within (−25,+25) MeV for the K+π−π−,
K 0

Sπ
−, K 0

Sπ
+π−π− and K+K−π− final states, and be

within (−55,+40) MeV for the K+π−π−π0 and K 0
Sπ

−π0

final states.
To obtain the ST yield, we apply a fit to the MBC distribu-

tions of the accepted mKnπ final states for data. In the fits,
the D− signal is modeled by a MC-determined shape of the
MBC distribution convoluted with a double Gaussian func-
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Fig. 1 Fits to the MBC distributions of a K+π−π−, b K 0
Sπ

−,
c K+π−π−π0, d K 0

Sπ
−π0, e K 0

Sπ
+π−π− and (f) K+K−π− combi-

nations. The dots with error bars are data, the blue solid curves are the
fit results, the red dashed curves are the fitted backgrounds and the pair
of red arrows in each sub-figure denote the ST D− signal region

tion and the combinatorial background shape is described
by the ARGUS function [21]. The fit results are shown in
Fig. 1. The candidates with MBC in the range (1.863, 1.877)

GeV/c2 (signal region) are kept for further analysis. The ST
yields and the ST efficiencies estimated from the inclusive
MC sample are summarized in Table 1. The total ST yield is
N tot

ST = 1522474 ± 2215.

5 DT events

From the surviving charged tracks and photons in the sys-
tems against the ST D− mesons, the D+ → K̄ 0μ+νμ can-
didates are selected with the following, optimized criteria.
The K̄ 0 is reconstructed using the decays K̄ 0 → π+π−
and K̄ 0 → π0π0. To select K̄ 0(π0π0), the π0π0 invariant
mass is required to be within (0.45, 0.51) GeV/c2. If more
than one combination survives, the one with the minimum
χ2

1 (π0 → γ γ ) + χ2
2 (π0 → γ γ ) is kept, where χ2

1 and χ2
2

are the chi-squares of the mass-constrained fits on π0 → γ γ .
The good charged tracks, photons, π0, and K̄ 0(π+π−) can-
didates are selected with the same criteria as those used in
the ST selection.

We require that there be only one good additional charged
track with charge opposite to that of the ST D− meson.
For muon identification, we combine the dE/dx , TOF and
EMC information to calculate the Confidence Levels for elec-
tron, pion, kaon and muon hypotheses (CLe, CLπ , CLK ,
CLμ), respectively. The charged track is assigned as a muon
candidate if the confidence levels satisfy CLμ > CLK ,

CLμ > CLe and CLμ > 0.001. To decrease the rate of
mis-identifying pions as muons, we require that the energies
deposited in the EMC by muons be within (0.1, 0.3) GeV.

Since the neutrino is undetectable, we define a kinematic
quantity

Umiss ≡ Emiss − | �pmiss|,
where Emiss and | �pmiss| are the energy and momentum of
the missing particle in the DT event, respectively. Emiss is
calculated by

Emiss = Ebeam − EK̄ 0 − Eμ+ ,

where EK̄ 0 and Eμ+ are the measured energies of K̄ 0 and
μ+, respectively. �pmiss is defined as

�pmiss = | �pD+ − �pK̄ 0 − �pμ+|,
where �pK̄ 0 and �pμ+ are the measured momenta of K̄ 0 and
μ+, �pD+ is the constrained momentum of D+ meson

�pD+ = (− p̂D−
ST

)

√
E2

beam − m2
D+ ,

where p̂D−
ST

is the momentum direction of the ST D− meson

and mD+ is the D+ nominal mass [2].
Figures 2 and 3 show the distributions of the K̄ 0μ+ invari-

ant masses (MK̄ 0μ+) and the maximum energies (Eextra γ
max )

of any of the extra photons which have not been used in
the DT event selection from data and the inclusive MC
sample, respectively, in which the backgrounds are dom-
inated by D+ → K̄ 0π+(π0). To suppress these back-
grounds, we require that the D+ → K̄ 0μ+νμ candidates
have MK̄ 0μ+ < 1.6 GeV/c2 and Eextra γ

max < 0.15 GeV.
The DT efficiency is determined by analyzing signal MC

events. Dividing εDT by εST, we obtain the efficiency of
detecting D+ → K̄ 0μ+νμ (ε+−

D+→K̄ 0μ+νμ
) for each ST

mode. They are summarized in Table 1. The averaged effi-
ciencies of detecting D+ → K̄ 0μ+νμ are determined to be

ε̄+−
D+→K̄ 0μ+νμ

=
∑

i (N
i
STε

i,+−
D+→K̄ 0μ+νμ

)

N tot
ST

=(35.97 ± 0.11) %

and

ε̄00
D+→K̄ 0μ+νμ

=
∑

i (N
i
STε

i,00
D+→K̄ 0μ+νμ

)

N tot
ST

=(21.10 ± 0.10) %,

where the i denotes the sum over the six ST modes and +−
and 00 denote the D+ → K̄ 0μ+νμ signals, which are recon-
structed via K̄ 0 → π+π− and K̄ 0 → π0π0, respectively.

To determine the signal yield, we perform simultaneous
fits to the two Umiss distributions of the DT candidates, in
which D+ → K̄ 0μ+νμ is reconstructed via K̄ 0 → π+π−
and K̄ 0 → π0π0. In the fits, we constrain the numbers of
the efficiency and branching fraction corrected DT events
and D+ → K̄ 0π+π0 peaking backgrounds, respectively,
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Fig. 2 The MK̄ 0μ+ distributions of the a D+ → K̄ 0(π+π−)μ+νμ

and b D+ → K̄ 0(π0π0)μ+νμ candidates of data (points with error
bars) and the inclusive MC sample (histograms). The perpendicular
black arrow shows the requirement MK̄ 0μ+ < 1.6 GeV/c2. Other back-

grounds are dominated by D+ → K̄ 0π+π0. For this figure, Umiss is
required to be within (−0.06,+0.06) GeV

under the assumption that K 0
S contributes to half of the neu-

tral kaon decays. We use MC-determined shapes convoluted
with Gaussian functions to describe the D+ → K̄ 0μ+νμ

signal and the D+ → K̄ 0π+π0 peaking background, and
MC-based shape is also employed to represent the rest of the
background and their overall normalizations are free param-
eters in the fits. The fit results are shown in Fig. 4. From the
constrained fits, we determine the efficiency and branching
fraction corrected DT production yield in data to be

N prd
DT = 132712 ± 1041,

corresponding to the observed DT yields N+−,obs
DT = 16516±

130 and N 00,obs
DT = 4198 ± 33 for the +− and 00 modes,

respectively.
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Fig. 3 The Eextra γ
max distributions of the a D+ → K̄ 0(π+π−)μ+νμ

and b D+ → K̄ 0(π0π0)μ+νμ candidates of data (points with error
bars) and the inclusive MC sample (histograms). The perpendicular
black arrow shows the requirement Eextra γ

max < 0.15 GeV. For this figure,
Umiss is required to be within (−0.06,+0.06) GeV

We compare the cos θ and momentum distributions of K̄ 0

and μ+ as well as the ππ invariant mass distrubtions from
the D+ → K̄ 0(π+π−)μ+νμ and D+ → K̄ 0(π0π0)μ+νμ

candidates between data and MC, as shown in Figs. 5, 6
and 7, respectively. Here, Umiss is required to be within
(−0.06,+0.06) GeV, which includes about 98 % of D+ →
K̄ 0(π+π−)μ+νμ and 86 % of D+ → K̄ 0(π0π0)μ+νμ sig-
nals. In these figures, we can see good agreement between
data and MC.

6 Systematic uncertainty

The common systematic uncertainty in B(D+ → K̄ 0μ+νμ)

measured with K̄ 0 → π+π− and K̄ 0 → π0π0 arises
from the uncertainties in the fits to the MBC distributions,

Table 1 Summary of the ST yields (Ni
ST), the ST and DT efficien-

cies (εiST and εiDT), and the efficiencies of detecting D+ → K̄ 0μ+νμ

(εi
D+→K̄ 0μ+νμ

). The efficiencies (in percent) do not include B(π0 →
γ γ ) and B(K̄ 0 → ππ). +− and 00 denote the D+ → K̄ 0μ+νμ sig-
nals, which are reconstructed via K̄ 0 → π+π− and K̄ 0 → π0π0,

respectively. The DT efficiencies have been corrected according to the
differences of the efficiencies of the μ+ tracking, the μ+ PID, the π0

reconstruction of the signal side and the Eextra γ
max (see text) requirement

between data and MC. The i represents the i th ST mode. The uncer-
tainties are statistical only

Tag mode Ni
ST εiST ε

i,+−
DT ε

i,+−
D+→K̄ 0μ+νμ

ε
i,00
DT ε

i,00
D+→K̄ 0μ+νμ

D− → K+π−π− 782669±990 50.61±0.06 17.96±0.05 35.49±0.11 10.75±0.06 21.23±0.13

D− → K 0
Sπ

− 91345±320 50.41±0.17 18.66±0.16 37.00±0.34 11.73±0.20 23.26±0.40

D− → K+π−π−π0 251008±1135 26.74±0.09 9.50±0.05 35.52±0.23 5.17±0.06 19.34±0.22

D− → K 0
Sπ

−π0 215364±1238 27.29±0.07 10.71±0.06 39.23±0.24 6.11±0.07 22.35±0.26

D− → K 0
Sπ

+π−π− 113054±889 28.31±0.12 9.98±0.08 35.26±0.32 5.97±0.09 21.08±0.34

D− → K+K−π− 69034±460 40.83±0.24 13.34±0.14 32.69±0.40 7.88±0.17 19.31±0.43
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the 
E and MBC requirements, the μ+ tracking, the μ+
PID, the Eextra γ

max requirement, the MK̄ 0μ+ requirement and
the Umiss fit. The uncertainty in the fits to the MBC distri-
butions is estimated to be 0.5 % by examining the relative
change of the yields of data and MC via varying the fit range,
the combinatorial background shape or the endpoint of the
ARGUS function. To estimate the uncertainties in the 
E
and MBC requirements, we examine the branching fractions
by enlarging the 
E windows by 5 or 10 MeV and varying
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K̄ 0 and c,dμ+ from the D+ → K̄ 0(π0π0)μ+νμ candidates, where the
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sample, and the hatched histograms are the MC simulated backgrounds
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Fig. 7 Comparisons of the a π+π− and b π0π0 distributions of the
D+ → K̄ 0μ+νμ candidates, where the dots with error bars are data,
the red histograms are the inclusive MC sample and the arrow pairs
denote the K 0 mass windows

the MBC windows by ±1 MeV/c2, respectively. The maxi-
mum changes of the branching fractions, which are 0.3 and
0.3 % for 
E and MBC requirements, are assigned as the
uncertainties, respectively. The uncertainties in the tracking
and PID for μ+ are estimated by analyzing e+e− → γμ+μ−
events. The differences of the two-dimensional (momentum
and cos θ ) weighted tracking efficiencies of data and MC are
determined to be (+0.2±0.5) % and (−1.5±0.5) %, respec-
tively. We assign 0.5 and 0.5 % as the systematic uncertainties
in the tracking and PID for μ+ after correcting for these dif-
ferences, respectively. Due to different topologies, there may
be difference between the weighted efficiencies for the muons
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in D+ → K̄ 0μ+νμ and e+e− → γμ+μ−. This difference,
which is estimated to be 0.5 % by analyzing the two kinds of
signal MC events, is considered as a systematic uncertainty.
By examining the doubly tagged hadronic DD̄ decays, we
find that the difference of the acceptance efficiencies with
Eextra γ

max < 0.15 GeV of data and MC is (+3.6 ± 0.1) %. So,
we assign 0.1 % as the uncertainty in the Eextra γ

max require-
ment after correcting the MC efficiency to data. The uncer-
tainty in the MK̄ 0μ+ requirement is estimated to be 0.8 % by
comparing the branching fractions measured with alternative
requirements of MK̄ 0μ+ < 1.55 and 1.65 GeV/c2 with the
nominal value. The uncertainty in the Umiss fit is estimated
to be 0.8 % by comparing the branching fractions measured
using different signal shape, background shape and fit range
with the nominal value. Here, to examine the uncertainty in
the background shape, we vary the relative strengths of each
of the components in the inclusive MC sample and shift the
estimated numbers of other peaking backgrounds by 1σ . In
our previous work, the uncertainty in the signal MC gen-
erator is estimated to be 0.1 %, which is obtained by com-
paring the DT efficiencies before and after re-weighting the
q2 = (pD − pK )2 distribution of the signal MC events of
D0 → K−e+νe to data [23], where the pD and pK are the
momenta of D and K mesons. Adding these in quadrature,
we obtain the total common systematic uncertainty δcom

sys to
be 1.6 %.

For the measurement with K̄ 0 → π+π−, the independent
systematic uncertainty arises from the uncertainties in the
K̄ 0 → π+π− reconstruction, the MC statistics (0.4 %), and
B(K̄ 0 → π+π−) (0.1 %) [2]. The uncertainty in the K̄ 0 →
π+π− reconstruction is estimated to be 1.5 % by studying
J/ψ → K ∗∓K± and J/ψ → φ K̄ 0K±π∓ + c.c. events
[22]. Adding these uncertainties in quadrature, we obtain the
total independent systematic uncertainty (δind

sys ) for K̄ 0 →
π+π− mode to be 1.6 %.

For the measurement with K̄ 0 → π0π0, the indepen-
dent systematic uncertainty arises from the uncertainties in
the π0 selection, the K̄ 0 mass window, the MC statistics
(0.5 %), B(K̄ 0 → π0π0) (0.2 %) [2] and the χ2

1 + χ2
2

selection method. The π0 reconstruction efficiency is ver-
ified by analyzing the hadronic decays D0 → K−π+ and
K−π+π+π− versus D̄0 → K−π+π0 and K 0

S(π
+π−)π0.

The difference of the π0 reconstruction efficiencies of data
and MC is found to be (−1.1±1.0) % per π0. After correcting
the detection efficiency of the signal side for this difference,
the systematic uncertainty in π0 reconstruction is taken as
1.0 % per π0. Here, the photons from the K̄ 0 → K 0

S(π
0π0)

decays are reconstructed under an assumption that the K 0
S

meson decayed at the IP. We investigate the DT efficien-
cies of two kinds of signal MC events, in which the life-
times of K 0

S meson from the signal side are set at the nom-
inal value and 0, respectively. Their difference is less than
0.2 %, which is considered as the systematic uncertainty of

the K 0
S(π

0π0) reconstruction. To avoid the effect of the
D+ → K̄ 0π+π0 peaking backgrounds, the uncertainty
in the K̄ 0(π0π0) mass window is estimated by examining
the B(D+ → K̄ 0e+νe) using the same K̄ 0(π0π0) selec-
tion criteria. We compare the branching fractions measured
using alternative K̄ 0(π0π0) mass windows (0.460, 0.505),
(0.470, 0.500), (0.480, 0.500) GeV/c2 with the nominal
value. The maximum change of the re-measured branching
fractions 0.9 % is taken as the systematic uncertainty. The
uncertainty in the χ2

1 + χ2
2 selection method is estimated to

be 0.3 %, which is the difference of the π0π0 acceptance
efficiencies of the hadronic decays of D0 → K−π+π0

versus D̄0 → K+π−π0 between data and MC. Adding
these in quadrature, we obtain the total independent sys-
tematic uncertainty (δcom

sys ) for K̄ 0 → π0π0 mode to be
2.3 %.

Table 2 summarizes the systematic uncertainties in the
measurement of B(D+ → K̄ 0μ+νμ). Quadratically com-
bining the independent uncertainties for +− and 00 modes
after considering their observed DT yields as weights, we
obtain the independent uncertainty to be 1.4 %. Adding the
common and independent uncertainties in quadrature yields
the total systematic uncertainty 2.1 %.

Table 2 Systematic uncertainties (%) in the measurement of B(D+ →
K̄ 0μ+νμ). δcom

sys and δind
sys denote the common and independent system-

atic uncertainties for +− and 00 modes

Common source Uncertainty

MBC fit 0.5


E requirement 0.3

MBC ∈ (1.863, 1.877) GeV/c2 0.3

μ+ tracking 0.5

μ+ PID 0.5

Topology difference 0.5

Eextra γ
max < 0.15 GeV 0.1

MK̄ 0μ+ < 1.6 GeV/c2 0.8

Umiss fit 0.8

MC generator 0.1

δcom
sys 1.6

Independent source K̄ 0 → π+π− K̄ 0 → π0π0

π0 reconstruction – 2.0

K̄ 0(π+π−) reconstruction 1.5 –

K̄ 0(π0π0) reconstruction – 0.2

Mπ0π0 ∈ (0.45, 0.51) GeV/c2 – 0.9

MC statistics 0.4 0.5

Quoted B(K̄ 0 → ππ) 0.1 0.2

χ2
1 + χ2

2 selection method – 0.3

δind
sys 1.6 2.3
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7 Branching fraction

The branching fraction of D+ → K̄ 0μ+νμ is determined by

B(D+ → K̄ 0μ+νμ) = N prd
DT

N tot
ST

, (4)

where N prd
DT is the DT production yield corrected for detection

efficiency and daughter decay branching fractions, which has
been constrained to be the same for +− and 00 modes in the
simultaneous fits, and N tot

ST is the total ST yield.

Inserting the numbers of N prd
DT and N tot

ST in Eq. (4), we
obtain

B(D+ → K̄ 0μ+νμ) = (8.72 ± 0.07 ± 0.18) %, (5)

where the first uncertainty is statistical and the second sys-
tematic.

Furthermore, we examine the measured branching frac-
tions for D+ → K̄ 0μ+νμ by separately using each of the
ST modes, which are shown Fig. 8. We can see that they are
consistent with the nominal result within uncertainties very
well. Here, the uncertainties are statistical only. The average
branching fraction over the six ST modes, weighted by their
statistical uncertainties, is (8.70 ± 0.07) % and is consistent
with our nominal result.

8 Summary and discussion

In summary, by analyzing 2.93 fb−1 of data collected at
√
s =

3.773 GeV with the BESIII detector, we measure the absolute
branching fractionB(D+ → K̄ 0μ+νμ) = (8.72±0.07stat.±

-π-K+ K→-D

-π-π+π
0

K→-D

0π-π
0

K→-D

0π-π-π+ K→-D

-π
0

K→-D

-π-π+ K→-D

) (%)μν+μ
0

K→+B(D
7.5 8 8.5 9

Fig. 8 Comparison of the branching fractions. Dots with error bars
are results measured using different ST modes, and shadow band is the
nominal result. Only statistical uncertainties are shown

0.18sys.) %, which is consistent with previous measurements
within uncertainties but with significantly improved preci-
sion. Combining the B(D+ → K̄ 0μ+νμ) measured in this
work with the τD0 , τD+ , B(D0 → K−μ+νμ) and B(D+ →
K̄ 0e+νe) taken from the world average [2], we determine the
ratios of the partial widths �(D0 → K−μ+νμ)/�(D+ →
K̄ 0μ+νμ) = 0.963 ± 0.044, which supports isospin con-
servation holding in the exclusive semi-muonic decays of
D+ and D0 mesons, and �(D+ → K̄ 0μ+νμ)/�(D+ →
K̄ 0e+νe) = 0.988 ± 0.033, which is consistent with the
predicted value in Ref. [1] within uncertainties.

Acknowledgments The BESIII collaboration thanks the staff of
BEPCII and the IHEP computing center for their strong support. This
work is supported in part by National Key Basic Research Program
of China under Contract Nos. 2009CB825204 and 2015CB856700;
National Natural Science Foundation of China (NSFC) under Con-
tracts Nos. 10935007, 11125525, 11235011, 11305180, 11322544,
11335008, 11425524; the Chinese Academy of Sciences (CAS) Large-
Scale Scientific Facility Program; the CAS Center for Excellence in
Particle Physics (CCEPP); the Collaborative Innovation Center for
Particles and Interactions (CICPI); Joint Large-Scale Scientific Facil-
ity Funds of the NSFC and CAS under Contracts Nos. 11179007,
U1232201, U1332201; CAS under Contracts Nos. KJCX2-YW-N29,
KJCX2-YW-N45; 100 Talents Program of CAS; National 1000 Tal-
ents Program of China; INPAC and Shanghai Key Laboratory for
Particle Physics and Cosmology; German Research Foundation DFG
under Contract No. Collaborative Research Center CRC-1044; Istituto
Nazionale di Fisica Nucleare, Italy; Koninklijke Nederlandse Akademie
van Wetenschappen (KNAW) under Contract No. 530-4CDP03; Min-
istry of Development of Turkey under Contract No. DPT2006K-
120470; National Natural Science Foundation of China (NSFC) under
Contracts Nos. 11405046, U1332103; Russian Foundation for Basic
Research under Contract No. 14-07-91152; The Swedish Resarch Coun-
cil; U. S. Department of Energy under Contracts Nos. DE-FG02-
04ER41291, DE-FG02-05ER41374, DE-SC0012069, DESC0010118;
U.S. National Science Foundation; University of Groningen (RuG)
and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI),
Darmstadt; WCU Program of National Research Foundation of Korea
under Contract No. R32-2008-000-10155-0.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. J.G. Körner, G.A. Schuler, Z. Phys. C 46, 93 (1990)
2. K.A. Olive et al., Particle Data Group, Chin. Phys. C 38, 090001

(2014)
3. Y. Fang, G. Rong, H.L. Ma, J.Y. Zhao, Eur. Phys. J. C 75, 10 (2015)
4. Z. Bai et al., MARKIII Collaboration, Phys. Rev. Lett. 66, 1011

(1991)
5. J.M. Link et al., FOCUS Collaboration, Phys. Lett. B598, 33 (2004)
6. M. Ablikim et al., BES Collaboration. Phys. Lett. B 644, 20 (2007)
7. M. Ablikim et al., BESIII Collaboration, Chin. Phys. C 37, 123001

(2013)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


369 Page 10 of 10 Eur. Phys. J. C (2016) 76 :369

8. M. Ablikim et al., BESIII Collaboration, Phys. Lett. B 753, 629
(2016)

9. M. Ablikim et al., BESIII Collaboration, Nucl. Instrum. Meth. A
614, 345 (2010)

10. S. Agostinelli et al., GEANT4 Collaboration, Nucl. Instrum. Meth.
A 506, 250 (2003)

11. S. Jadach, B.F.L. Ward, Z. Was, Comput. Phys. Commun. 130, 260
(2000)

12. S. Jadach, B.F.L. Ward, Z. Was, Phys. Rev. D 63, 113009 (2001)
13. E.A. Kureav, V.S. Fadin, Sov. J. Nucl. Phys. 41, 466 (1985)
14. E.A. Kureav, V.S. Fadin, Yad. Fiz. 41, 733 (1985)
15. E. Barberio, Z. Was, Comput. Phys. Commun. 79, 291 (1994)

16. D.J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001)
17. R. G. Ping. Chin. Phys. C 32, 599 (2008)
18. K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021

(2010). (and 2011 partial update for the 2012 edition)
19. J.C. Chen et al., Phys. Rev. D 62, 034003 (2000)
20. D. Becirevic, A.B. Kaidalov, Phys. Lett. B 478, 417 (2000)
21. H. Albrecht et al., ARGUS Collaboration, Phys. Lett. B 241, 278

(1990)
22. M. Ablikim et al., BESIII Collaboration, Phys. Rev. D 92, 112008

(2015)
23. M. Ablikim et al., BESIII Collaboration, Phys. Rev. D 92, 072012

(2015)

123


	Improved measurement of the absolute branching fraction  of D+rightarrowbarK0 µ+νµ
	BESIII Collaboration
	Abstract 
	1 Introduction
	2 BESIII detector and Monte Carlo
	3 Method
	4 ST D- mesons
	5 DT events
	6 Systematic uncertainty
	7 Branching fraction
	8 Summary and discussion
	Acknowledgments
	References





